Question

In: Physics

A heat engine made with an ideal gas with f = 5 degrees of freedom has...

A heat engine made with an ideal gas with f = 5 degrees of freedom has 3 steps. Starting with a volume of 8 liters and a pressure of 1.3 × 10^5 Pa, the gas is compressed adiabatically to a volume of 1 liter and a pressure P2. Next the gas expands at constant pressure back to 8 liters, then the pressure drops at constant volume back to 1.3×10^5 Pa.

Draw the cycle in a P −V diagram.

Calculate the pressure P2.

Calculate the efficiency of the engine.

Calculate the ratio Tmin/Tmax of minimum and maximum temperatures during the cycle and compare the efficiency of this engine to e(Carnot) of a Carnot engine operating with the same value of Tmin/Tmax.

Solutions

Expert Solution


Related Solutions

A heat engine made with an ideal gas with f = 5 degrees of freedom has...
A heat engine made with an ideal gas with f = 5 degrees of freedom has 3 steps. Starting with a volume of 8 liters and a pressure of 1.3 × 10^5 Pa, the gas is compressed adiabatically to a volume of 1 liter and a pressure P2. Next the gas expands at constant pressure back to 8 liters, then the pressure drops at constant volume back to 1.3×10^5 Pa. Draw the cycle in a P −V diagram. Calculate the...
An ideal gas with f = 3 degrees of freedom starts with a volume of 6...
An ideal gas with f = 3 degrees of freedom starts with a volume of 6 liters, a pressure of 1.1×10^5 Pa and a temperature of 20◦C. The gas is compressed adiabatically to 2 liters, then expands at constant temperature back to 6 liters. Then it is again adiabatically compressed to 2 liters, and isothermally expands to 6 liters. Draw the 4 steps in a P −V diagram. Calculate the final pressure and final temperature.
An ideal gas with 3 translational, 2 rotational and 2 vibrational degrees of freedom is at...
An ideal gas with 3 translational, 2 rotational and 2 vibrational degrees of freedom is at an initial temperature of 227 degrees Celsius, initial pressure of 24 atm and occupies an initial volume of 1800 L. A) How many moles of molecules make up this gas? If the gas expands isothermally to a volume of 5400 L. What is the new pressure? B) How much work was done in the process? What was the change in internal energy? C) How...
An ideal gas with 7 degrees of freedom begins at a pressure of 8.5 atm, temperature...
An ideal gas with 7 degrees of freedom begins at a pressure of 8.5 atm, temperature of 25 degrees Celsius and volume of 120L. A) How many moles of gas are there? B) The gas expands isobarically to 200L. What is the new temperature? C) How much work was done in the expansion? D) By how much did the internal energy increase? E) What amount of heat flowed into the gas? G) The gas then depressurizes isochorically to the original...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶...
A heat engine with a monatomic ideal gas reversibly goes through the following cycle. A ⟶ B is an isothermal process. B⟶ C is an isovolumetric process. C⟶ A is an adiabatic process. (i) Determine the work done on the ideal gas during each cycle of this heat engine, (ii) Determine the heat flow into the gas during each cycle of this heat engine (iii) Determine the net work done by one cycle (iv) Determine the efficiency of this heat...
A heat engine uses a heat source at 580 ∘C and has an ideal (Carnot) efficiency...
A heat engine uses a heat source at 580 ∘C and has an ideal (Carnot) efficiency of 29 % . To increase the ideal efficiency to 46 % , what must be the temperature of the heat source?
An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
A Carnot heat engine has an ideal efficiency of 34% and produces 25 kW of output...
A Carnot heat engine has an ideal efficiency of 34% and produces 25 kW of output power. At what rate (MJ/h) must it discharge heat when operating at full power?
write the degrees of freedom (F) and the state the water is in. Calculate quality or...
write the degrees of freedom (F) and the state the water is in. Calculate quality or degrees of superheat if applicable. a. What is the specific volume and vapor pressure (saturation pressure) of saturated liquid at 64° C? b. What is the specific volume and vapor pressure of saturated vapor at 174 °C? c. What is the quality of wet steam if V= 8.35 cm3/g at 10,703 kPa? What is the saturation temperature What is the specific internal Energy?
2. Understand how much work and heat are transferred in an ideal heat engine or reverse...
2. Understand how much work and heat are transferred in an ideal heat engine or reverse heat engine. a) What is the maximum work that I can get from a heat source at 450K and a cold sink at 298K? (0.338 J per joule of heat in at 450 K) b) How much heat can I get from ideal reverse heat engine per Joule of energy of work if the outside temperature is 10oC and my house is at 25oC?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT