In: Statistics and Probability
Import the RestaurantRating1 dataset in R and save the resulting data frame. RestaurantRating1 is shown below as a table. Use some of the data wrangling techniques to transform the dataset into a tidy data. Use glimpse() function to show the resulting dataframe.
| 
 Donalds  | 
 Fila  | 
 King  | 
 Payes  | 
 Wendi  | 
| 
 1  | 
 3  | 
 1  | 
 1  | 
 1  | 
| 
 2  | 
 3  | 
 1  | 
 1  | 
 2  | 
| 
 2  | 
 3  | 
 1  | 
 2  | 
 2  | 
| 
 3  | 
 3  | 
 1  | 
 2  | 
 2  | 
| 
 3  | 
 3  | 
 1  | 
 3  | 
 3  | 
| 
 3  | 
 3  | 
 5  | 
 3  | 
 3  | 
| 
 3  | 
 3  | 
 5  | 
 4  | 
 4  | 
| 
 4  | 
 3  | 
 5  | 
 4  | 
 4  | 
| 
 4  | 
 3  | 
 5  | 
 5  | 
 4  | 
| 
 5  | 
 3  | 
 5  | 
 5  | 
 5  | 
Rcode:
RestaurantRating1 =read.table(header = TRUE, text ="
Donalds   Fila   King  
Payes   Wendi
1   3   1   1   1
2   3   1   1   2
2   3   1   2   2
3   3   1   2   2
3   3   1   3   3
3   3   5   3   3
3   3   5   4   4
4   3   5   4   4
4   3   5   5   4
5   3   5   5   5
"
)
filter(RestaurantRating1, Payes == 3| Wendi== 3 )
RestaurantRating1 %>% select(Payes, Donalds, Fila,King)
RestaurantRating1%>%summarise(avg_payes=mean(Payes),avg_Donalds=mean(Donalds),avg_Fila=mean(Fila),)
glimpse(RestaurantRating1)