In: Finance
The Saleemi Corporation's $1000 bonds pay 9 percent interest annually and have 11 years until maturity. You can purchase the bond for $925.
a. What is the yield to maturity on this bond? (round to 2 decimal points)
b. Should you purchase the bond if the yield to maturity on a comparable-risk bond is 9 percent?
a
| K = N |
| Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
| k=1 |
| K =11 |
| 925 =∑ [(9*1000/100)/(1 + YTM/100)^k] + 1000/(1 + YTM/100)^11 |
| k=1 |
| YTM% = 10,2 |
| Using Calculator: press buttons "2ND"+"FV" then assign |
| PV =-925 |
| PMT = Par value * coupon %=1000*9/(100) |
| N =11 |
| FV =1000 |
| CPT I/Y |
| Using Excel |
| =RATE(nper,pmt,pv,fv,type,guess) |
| =RATE(11,-9*1000/(100),925,-1000,,) |
b
| K = N |
| Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
| k=1 |
| K =11 |
| Bond Price =∑ [(9*1000/100)/(1 + 9/100)^k] + 1000/(1 + 9/100)^11 |
| k=1 |
| Bond Price = 1000 |
| Using Calculator: press buttons "2ND"+"FV" then assign |
| PMT = Par value * coupon %=1000*9/(100) |
| I/Y =9 |
| N =11 |
| FV =1000 |
| CPT PV |
| Using Excel |
| =PV(rate,nper,pmt,FV,type) |
| =PV(9/(100),11,-9*1000/(100),-1000,) |
Buy as current price is lesser than intrinsic price at 9%