Question

In: Physics

A 40-kg crate that is pushed at constant velocity a distance 10.0 m along a 30°...

A 40-kg crate that is pushed at constant velocity a distance 10.0 m along a 30° incline by the horizontal force F. The coefficient of kinetic friction between the crate and the incline is µk = 0.30.

a.)Calculate the work done by the applied force.

b.)Calculate the work done by the frictional force.

Solutions

Expert Solution


Related Solutions

6.3: a factory worker pushes a 30 kg crate a distance of 4.5 m along a...
6.3: a factory worker pushes a 30 kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on it. the coefficient of kinetic friction between the crate and the floor is 0.25. Suppose the worker in exercise 6.3 pushes downward at an angleof 300 below the horizontal (a) what magnitude of forcemust the worker apply to move the crate at constatnt velocity? (b)how mach work is done on the crate by this force...
A factory worker pushes a 32.0 kg crate a distance of 4.3 m along a level...
A factory worker pushes a 32.0 kg crate a distance of 4.3 m along a level floor at constant velocity by pushing downward at an angle of 29 ? below the horizontal. The coefficient of kinetic friction between the crate and floor is 0.25. part a. What magnitude of force must the worker apply to move the crate at constant velocity? (N) part b. How much work is done on the crate by this force when the crate is pushed...
A factory worker pushes a crate of mass 30.7 kg a distance of 5.00 m along...
A factory worker pushes a crate of mass 30.7 kg a distance of 5.00 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction between the crate and floor is 0.26. a)What magnitude of force must the worker apply? b)How much work is done on the crate by this force? c)How much work is done on the crate by friction? d)How much work is done by the normal force? e)How much work...
A 45.0-kg crate is dragged at constant velocity 8.20 m across a horizontal floor with a...
A 45.0-kg crate is dragged at constant velocity 8.20 m across a horizontal floor with a rope making a 30 degree angle above the horizontal. The coefficient of kinetic friction is 0.250. Find the work done by friction. Give your answer in Joules.
A worker pushed a 21 kg block 8.0 m along a level floor at constant speed...
A worker pushed a 21 kg block 8.0 m along a level floor at constant speed with a force directed 30° below the horizontal. If the coefficient of kinetic friction between block and floor was 0.30, what were (a) the work done by the worker's force and (b) the increase in thermal energy of the block-floor system?
A 38.0-kg crate is being pushed along a horizontal surface. The applied force is 94.0 N...
A 38.0-kg crate is being pushed along a horizontal surface. The applied force is 94.0 N directed at an angle of 18.0° below the horizontal and the coefficient of friction is .21. a)  Draw a free body diagram for the crate. b)  Write expressions for the x and y components of the applied force (no numbers). c)  Sum forces in the x and y direction (no numbers). d)  Solve:  What is the acceleration of the crate?
a box of mass m = 66.0 kg (initially at rest) is pushed a distance d...
a box of mass m = 66.0 kg (initially at rest) is pushed a distance d = 54.0 m across a rough warehouse floor by an applied force of FA = 218 N directed at an angle of 30.0° below the horizontal. The coefficient of kinetic friction between the floor and the box is 0.100. Determine the following. (For parts (a) through (d), give your answer to the nearest multiple of 10.) * I already solved parts b and c...
A person pushes a 24.2-kg shopping cart at a constant velocity for a distance of 17.6...
A person pushes a 24.2-kg shopping cart at a constant velocity for a distance of 17.6 m on a flat horizontal surface. She pushes in a direction 22.7 ° below the horizontal. A 42.4-N frictional force opposes the motion of the cart. (a) What is the magnitude of the force that the shopper exerts? Determine the work done by (b) the pushing force, (c) the frictional force, and (d) the gravitational force.
A physics TA pushes a 20.0 kg equipment cart at a constant velocity for a distance...
A physics TA pushes a 20.0 kg equipment cart at a constant velocity for a distance of 28.0 m down the hall. The force she exerts on the cart is directed at an angle 20.0° below the horizontal, and the force of friction opposing the motion of the cart is 48.0 N. Determine the following. (a) the magnitude (in N) of the force exerted on the cart by the TA (b) the work done (in J) by the force the...
A person pushes a 10.5-kg shopping cart at a constant velocity for a distance of 37.6...
A person pushes a 10.5-kg shopping cart at a constant velocity for a distance of 37.6 m on a flat horizontal surface. She pushes in a direction 20.2 ° below the horizontal. A 53.1-N frictional force opposes the motion of the cart. (a) What is the magnitude of the force that the shopper exerts? Determine the work done by (b) the pushing force, (c) the frictional force, and (d) the gravitational force.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT