In: Finance
States |
Probability |
Asset M Return |
Asset N Return |
Asset O Return |
||||||
Boom |
27% |
10% |
21% |
2% |
||||||
Normal |
50% |
8% |
12% |
8% |
||||||
Recession |
23% |
2% |
1% |
10% |
a. What is the expected return of investing equally in all three assets M, N, O?
b. What is the expected return of investing in asset M alone?
c. What is the standard deviation of the portfolio that invests equally in all three assets?
d. What is he standard deviation of asset M?
a.
Stock M | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(A) | (A)^2* probability |
Recession | 0.23 | 0.02 | 0.0046 | -0.0516 | 0.000612389 |
Normal | 0.5 | 0.08 | 0.04 | 0.0084 | 0.00003528 |
Boom | 0.27 | 0.1 | 0.027 | 0.0284 | 0.000217771 |
Expected return = | sum of weighted return = | 0.0716 | Sum= | 0.00086544 | |
Standard deviation of stock A | =(sum)^(1/2) | 0.029418362 | |||
Stock N | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(B) | (B)^2* probability |
Recession | 0.23 | 0.01 | 0.0023 | -0.109 | 0.00273263 |
Normal | 0.5 | 0.12 | 0.06 | 0.001 | 5E-07 |
Boom | 0.27 | 0.21 | 0.0567 | 0.091 | 0.00223587 |
Expected return = | sum of weighted return = | 0.119 | Sum= | 0.004969 | |
Standard deviation of stock B | =(sum)^(1/2) | 0.070491134 | |||
Stock O | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(C) | (C)^2* probability |
Recession | 0.23 | 0.1 | 0.023 | -0.019 | 8.303E-05 |
Normal | 0.5 | 0.18 | 0.09 | 0.061 | 0.0018605 |
Boom | 0.27 | 0.02 | 0.0054 | -0.099 | 0.00264627 |
Expected return = | sum of weighted return = | 0.1184 | Sum= | 0.0045898 | |
Standard deviation of stock C | =(sum)^(1/2) | 0.067748063 |
Expected return= | Wt A*Return A+Wt B*Return B+Wt C*Return C |
Expected return= | 0.333333333333333*7.16+0.333333333333333*11.9+0.333333333333333*11.84 |
Expected return= | 10.3 |
b.
Stock M | |||
Scenario | Probability | Return | =rate of return * probability |
Recession | 0.23 | 0.02 | 0.0046 |
Normal | 0.5 | 0.08 | 0.04 |
Boom | 0.27 | 0.1 | 0.027 |
Expected return = | sum of weighted return = | 0.0716 |
=7.16%
c.
Variance= | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) |
Variance= | 0.001112151 |
Standard deviation= | (variance)^0.5 |
Standard deviation%= | 3.33 |
d.
Stock M | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(A) | (A)^2* probability |
Recession | 0.23 | 0.02 | 0.0046 | -0.0516 | 0.000612389 |
Normal | 0.5 | 0.08 | 0.04 | 0.0084 | 0.00003528 |
Boom | 0.27 | 0.1 | 0.027 | 0.0284 | 0.000217771 |
Expected return = | sum of weighted return = | 0.0716 | Sum= | 0.00086544 | |
Standard deviation of stock M | =(sum)^(1/2) | 0.029418362 |
=2.94%