FIND THE GENERAL SOLUTION TO THE DE: Y”’ + 4Y” – Y’ –
4Y = 0
COMPUTE:
L {7 e 3t – 5 cos ( 2t ) – 4 t 2
}
COMPUTE:
L – 1 {(3s + 6 ) / [ s ( s 2 + s – 6 ) ]
}
SOLVE THE INITIAL VALUE PROBLEM USING LAPLACE
TRANSFORMS:
Y” + 6Y’ + 5Y = 12 e t
WHEN : f ( 0 ) = -...
solve non-homogeneous de y" + y = sec^2x by finding-
the solution yh(x) to the equivalent homogeneous de
the particular solution yp(x) using variation of
parametrs
the general solution y(x) = yh(x) + yp(x) of the de
please explain the steps