Question

In: Statistics and Probability

Thirty small communities in Connecticut (population near 10,000 each) gave an average of x-bar = 138.5...

Thirty small communities in Connecticut (population near 10,000 each) gave an average of x-bar = 138.5 reported cases of larceny per year. Assume that σ is known to be 44.5 cases per year.

(a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(b) Find a 95% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(c) Find a 99% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.)

lower limit    
upper limit    
margin of error    


(d) Compare the margins of error for parts (a) through (c). As the confidence levels increase, do the margins of error increase?

As the confidence level increases, the margin of error decreases.

As the confidence level increases, the margin of error remains the same.     

As the confidence level increases, the margin of error increases.


(e) Compare the lengths of the confidence intervals for parts (a) through (c). As the confidence levels increase, do the confidence intervals increase in length?

As the confidence level increases, the confidence interval remains the same length.

As the confidence level increases, the confidence interval increases in length.     

As the confidence level increases, the confidence interval decreases in length.

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean = = 138.5

Population standard deviation =    = 44.5

Sample size = n = 30

a) At 90% confidence level

= 1 - 90%  

= 1 - 0.90 =0.10

/2 = 0.05

Z/2 = Z0.05 = 1.645


Margin of error = E = Z/2 * ( /n)

= 1.645 * (44.5 /  30 )

= 13.4

At 90% confidence interval estimate of the population mean is,

  ± E

138.5 ± 13.4

( 125.1, 151.9)  

lower limit = 125.1

upper limit = 151.9

margin of error = 13.4

b) At 95% confidence level

= 1 - 95%  

= 1 - 0.95 =0.05

/2 = 0.025

Z/2 = Z0.025 = 1.96


Margin of error = E = Z/2 * ( /n)

= 1.96 * (44.5 /  30)

= 15.9

At 95% confidence interval estimate of the population mean is,

  ± E

138.5 ± 15.9   

( 122.6, 154.4)  

lower limit = 122.6

upper limit = 154.4

margin of error = 15.9

c) At 99% confidence level

= 1 - 99%  

= 1 - 0.99 =0.01

/2 = 0.005

Z/2 = Z0.005 = 2.576


Margin of error = E = Z/2 * ( /n)

= 2.576 * (44.5 /  30 )

= 20.9

At 99% confidence interval estimate of the population mean is,

  ± E

138.5 ± 20.9

( 117.6, 159.4)  

lower limit = 117.6

upper limit = 159.4

margin of error = 20.9

d) As the confidence level increases, the margin of error increases.

e) As the confidence level increases, the confidence interval increases in length.


Related Solutions

Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 40.9 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 41.5 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 41.9 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 40.3cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the population...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 44.9 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 45.1 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit: upper limit: margin of error: (b) Find a 95% confidence interval for the...
Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 42.5 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit 126.9 Incorrect: Your answer is incorrect. upper limit 150.1 Incorrect: Your answer is...
Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty-four small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 41.9 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit upper limit margin of error (b) Find a 95% confidence interval for the...
Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 40.5 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5...
Thirty-two small communities in Connecticut (population near 10,000 each) gave an average of x = 138.5 reported cases of larceny per year. Assume that σ is known to be 43.1 cases per year. (a) Find a 90% confidence interval for the population mean annual number of reported larceny cases in such communities. What is the margin of error? (Round your answers to one decimal place.) lower limit     upper limit     margin of error     (b) Find a 95% confidence interval for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT