Question

In: Statistics and Probability

he following data represent the pH of rain for a random sample of 12 rain dates....

he following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. 5.20 5.72 4.38 4.80 5.02 4.57 4.74 5.19 5.43 4.76 4.56 5.71 ​

(a) Determine a point estimate for the population mean.

(b) Construct and interpret a 95​% confidence interval for the mean pH of rainwater.

(c) Construct and interpret a 99​% confidence interval for the mean pH of rainwater.

Solutions

Expert Solution

When finding the confidence intervals, if there are outliers in the given data, then the mean value will be greater and the variance will be larger. When the outliers are removed, the confidence interval will shift to the left and confidence interval will be narrower.


Related Solutions

The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (d) below. 5.30 5.72 4.99 4.80 5.02 4.57 4.74 5.19 5.29 4.76 4.56 4.91 ​(a) Determine a point estimate for the population mean. A point estimate for the population mean is nothing. ​(Round to two decimal places...
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ a) through​ d) below. 5.05 5.72 5.24 4.80 5.02 4.59 4.74 5.19 5.29 4.76 4.56 5.70 LOADING... Click the icon to view the table of critical​ t-values. c) Construct and interpret a 99​% confidence interval for the mean pH...
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (d) below 5.58 5.58 5.72 5.24 5.24 4.80 5.02 5.03 5.03 4.74 5.19 4.87 4.87 4.76 4.56 4.91 4.91 ​(a) Determine a point estimate for the population mean. A point estimate for the population mean is nothing....
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ a) through​ d) below. 5.58 5.72 4.89 4.80 5.02 4.58 4.74 5.19 4.61 4.76 4.56 5.69
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (d) below. Open in StatCrunch + Copy to Clipboard + Open in Excel + 5.585.58 5.72 4.624.62 4.80 5.02 4.684.68 4.74 5.19 5.345.34 4.76 4.56 5.305.30 ​(a) Determine a point estimate for the population mean. A point...
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (d) below. 5.305.30 5.72 4.994.99 4.80 5.02 4.574.57 4.74 5.19 5.345.34 4.76 4.56 4.914.91 ​(a) Determine a point estimate for the population mean. A point estimate for the population mean is nothing. ​(Round to two decimal places...
The following data represent the pH of rain for a random sample of 12 rain dates...
The following data represent the pH of rain for a random sample of 12 rain dates in a particular region. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. The sample standard deviation is s=0.333. Construct and interpret a 95​% confidence interval for the standard deviation pH of rainwater in this region. 4.67 5.23 5.09 4.70 4.69 4.80 5.77 4.87 4.91 4.62 4.72 4.66 Click the...
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ a) through​ d) below. 5.585.58 5.72 4.624.62 4.80 5.02 4.574.57 4.74 5.19 5.435.43 4.76 4.56 5.715.71 ​(a) Determine a point estimate for the population mean. A point estimate for the population mean is nothing. ​(Round to two decimal places...
The following data represent the pH of rain for a random sample of 12 rain dates...
The following data represent the pH of rain for a random sample of 12 rain dates in a particular region. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. The sample standard deviation is sequals0.344. Construct and interpret a 99​% confidence interval for the standard deviation pH of rainwater in this region
The following data represent the pH of rain for a random sample of 12 rain dates....
The following data represent the pH of rain for a random sample of 12 rain dates. A normal probability plot suggests the data could come from a population that is normally distributed. A boxplot indicates there are no outliers. Complete parts​ (a) through​ (d) below. 5.05 5.72 4.38 4.80 5.02 4.68 4.74 5.19 4.61 4.76 4.56 5.54 ​(a) Determine a point estimate for the population mean. A point estimate for the population mean is 4.92. ​(Round to two decimal places...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT