Question

In: Chemistry

where R=8.314 J/(mol⋅K), T is the Kelvin temperature, n is the number of moles of electrons...

where R=8.314 J/(mol⋅K), T is the Kelvin temperature, n is the number of moles of electrons transferred in the reaction, and F=96,485 C/mol e−.

At 68.0 ∘C , what is the maximum value of the reaction quotient, Q, needed to produce a non-negative E value for the reaction

SO42−(aq)+4H+(aq)+2Br−(aq)⇌Br2(aq)+SO2(g)+2H2O(l)

In other words, what is Q when E=0 at this temperature?

Express your answer numerically to two significant figures.

Solutions

Expert Solution


Related Solutions

Where n is the number of moles of electrons and F=96,500J/V⋅mol e− is the Faraday constant.
Part A Cell Potential and Free Energy of a Lithium–Chlorine Cell In thermodynamics, we determine the spontaneity of a reaction by the sign of ΔG. In electrochemistry, spontaneity is determined by the sign of E∘cell. The values of ΔG and E∘cell are related by the following formula: ΔG∘=−nFE∘cell where n is the number of moles of electrons and F=96,500J/V⋅mol e− is the Faraday constant. Part B Calculate the free energy ΔG∘ of the reaction. Express your answer in kilojoules. Part...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and...
n = 2.58 mol of Hydrogen gas is initially at T = 376 K temperature and pi = 1.88×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.78×105 Pa. What is the volume of the gas at the end of the compression process? How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...
n = 2.66 mol of Hydrogen gas is initially at T = 318 K temperature and...
n = 2.66 mol of Hydrogen gas is initially at T = 318 K temperature and pi = 2.49×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 9.49×105 Pa. a.)What is the volume of the gas at the end of the compression process? b.) How much work did the external force perform? c.) How much heat did the gas emit? d.) How much entropy did the gas emit? e.) What would be...
n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and...
n = 4.33 mol of Hydrogen gas is initially at T = 378 K temperature and pi = 2.88
n = 3.49 mol of Hydrogen gas is initially at T = 309 K temperature and...
n = 3.49 mol of Hydrogen gas is initially at T = 309 K temperature and pi = 2.97×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.27×105 Pa. What is the volume of the gas at the end of the compression process? How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...
n = 4.43 mol of Hydrogen gas is initially at T = 336.0 K temperature and...
n = 4.43 mol of Hydrogen gas is initially at T = 336.0 K temperature and pi = 2.45×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.84×105 Pa. How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?
n = 2.94 mol of Hydrogen gas is initially at T = 381 K temperature and...
n = 2.94 mol of Hydrogen gas is initially at T = 381 K temperature and pi = 2.24×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.63×105 Pa. What is the volume of the gas at the end of the compression process? *****What would be the temperature of the gas, if the gas was allowed to adiabatically expand back to its original pressure?
n = 4.67 mol of Hydrogen gas is initially at T = 345.0 K temperature and...
n = 4.67 mol of Hydrogen gas is initially at T = 345.0 K temperature and pi = 3.02×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 6.72×105 Pa. What is the volume of the gas at the end of the compression process? How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...
Estimate Keq for the following equilibria at 350 K. R = 8.3145 J/(mol*K). Substance ΔHo(kJ/mol) So(J/(mol*K))...
Estimate Keq for the following equilibria at 350 K. R = 8.3145 J/(mol*K). Substance ΔHo(kJ/mol) So(J/(mol*K)) SnO2(s) -577.6 49.0 H2(g) 0 130.680 CO(g) -110.5 197.7 Sn(s, white) 0 51.2 H2O(l) -285.83 69.95 Fe(s) 0 27.3 Fe3O4(s) -1118.4 146.4 Correct answer. Correct. SnO2(s) + 2H2(g) ⇄ Sn(s, white) + 2H2O(l) The number of significant digits is set to 2; the tolerance is +/-3% LINK TO TEXT Incorrect answer. Incorrect. 3Fe(s) + 4H2O(l) ⇄ Fe3O4(s) + 4H2(g) Entry field with incorrect answer...
Find T(t), N(t), and B(t) for r(t) = t^2 i + (2/3)t^3 j + t k...
Find T(t), N(t), and B(t) for r(t) = t^2 i + (2/3)t^3 j + t k at the point P ( 1, (2/3) , 1)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT