Question

In: Statistics and Probability

33) Suppose x has a distribution with μ = 84 and σ = 9. (a) If...

33) Suppose x has a distribution with μ = 84 and σ = 9. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? No, the sample size is too small. Yes, the x distribution is normal with mean μ x = 84 and σ x = 2.25. Yes, the x distribution is normal with mean μ x = 84 and σ x = 0.6. Yes, the x distribution is normal with mean μ x = 84 and σ x = 9. (b) If the original x distribution is normal, can we say anything about the x distribution of random samples of size 16? Yes, the x distribution is normal with mean μ x = 84 and σ x = 9. Yes, the x distribution is normal with mean μ x = 84 and σ x = 2.25. No, the sample size is too small. Yes, the x distribution is normal with mean μ x = 84 and σ x = 0.6. Find P(80 ≤ x ≤ 85). (Round your answer to four decimal places.)

Solutions

Expert Solution

Solution :

Given that,

mean = = 84

standard deviation = = 9

n = 16

a) No, the sample size is too small.

b) Yes, the x distribution is normal with mean μ x = 84 and σ x = 2.25

=   = 84

= / n = 9 / 16 = 2.25

P(80 85)  

= P[(80 - 84) / 2.25 ( - ) / (85 - 84) / 2.25)]

= P(-1.78 Z 0.44)

= P(Z 0.44) - P(Z -1.78)

Using z table,  

= 0.6700 - 0.0375   

= 0.6325


Related Solutions

Suppose x has a distribution with μ = 84 and σ = 15. (a) If random...
Suppose x has a distribution with μ = 84 and σ = 15. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? No, the sample size is too small.Yes, the x distribution is normal with mean μx = 84 and σx = 0.9.    Yes, the x distribution is normal with mean μx = 84 and σx = 3.75.Yes, the x distribution is normal with mean μx = 84...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a...
Suppose x has a distribution with μ = 12 and σ = 9. A.) If a random sample of size n = 35 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and the probability to three decimal places.) P(12 ≤ x ≤ 14)= B.) If a random sample of size n = 62 is drawn, find μx, σx and P(12 ≤ x ≤ 14). (Round σx to two decimal places and...
Suppose x has a distribution with μ = 17 and σ = 9.(a) If a random...
Suppose x has a distribution with μ = 17 and σ = 9.(a) If a random sample of size n = 45 is drawn, find μx, σ x and P(17 ≤ x ≤ 19). (Round σx to two decimal places and the probability to four decimal places.)μx = σ x = P(17 ≤ x ≤ 19) = (b) If a random sample of size n = 72 is drawn, find μx, σ x and P(17 ≤ x ≤ 19). (Round...
Suppose x has a distribution with μ = 65 and σ = 9. (a) If random...
Suppose x has a distribution with μ = 65 and σ = 9. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? No, the sample size is too small.Yes, the x distribution is normal with mean μx = 65 and σx = 9.     Yes, the x distribution is normal with mean μx = 65 and σx = 0.6.Yes, the x distribution is normal with mean μx = 65...
Suppose x has a distribution with μ = 33 and σ = 16. Find P(29 ≤...
Suppose x has a distribution with μ = 33 and σ = 16. Find P(29 ≤ x ≤ 34). (Round your answer to four decimal places.)
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 6. (a) If a random sample of size n = 39 is drawn, find μx, σ x and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 70 is drawn, find μx, σ x and P(11 ≤ x ≤...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a...
Suppose x has a distribution with μ = 25 and σ = 18. (a) If a random sample of size n = 34 is drawn, find μx, σ x and P(25 ≤ x ≤ 27). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(25 ≤ x ≤ 27) = (b) If a random sample of size n = 62 is drawn, find μx, σ x and P(25 ≤ x ≤...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If...
A. Suppose x has a distribution with μ = 23 and σ = 15. (a) If a random sample of size n = 39 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(23 ≤ x ≤ 25). (Round...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a...
Suppose x has a distribution with μ = 21 and σ = 15. (a) If a random sample of size n = 37 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(21 ≤ x ≤ 23) = (b) If a random sample of size n = 57 is drawn, find μx, σx and P(21 ≤ x ≤ 23). (Round σx...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a...
Suppose x has a distribution with μ = 11 and σ = 10. (a) If a random sample of size n = 36 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx to two decimal places and the probability to four decimal places.) μx = σx = P(11 ≤ x ≤ 13) = (b) If a random sample of size n = 64 is drawn, find μx, σx and P(11 ≤ x ≤ 13). (Round σx...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT