In: Finance
You believe that the likelihood that next year is a bull market year is 50%. You also believe that a bear market may occur with 20% likelihood. The following table contains information on the rates of return on various assets next year under various economic scenarios.
Security | Bull Market | Normal Market | Bear Market |
Security X | -2% | 18% | -10% |
Security Y | 25% | 10% | -15% |
Market | 11% | 8% | -2% |
Risk-free asset | 5% | 5% | 5% |
a) The capital allocation line is also called the capital market line, if the risky portfolio is the market portfolio. Write down the equation for the Capital Market Line using the information on the market portfolio in the table above.
b) What are the betas of security X and security Y? According to CAPM, are securities X and Y fairly priced? Explain.
Calculation of Average return, Standard deviation and Covariance with Market | ||||||||||
Security X | ||||||||||
Actual ret | Exp. Ret | Std Dev. | Actural retu | Exp. Ret | Covariance with X and Market | |||||
State | Prob. | AR | AR * Prob. | ((AR-ER)^2)*Prob. | Ar M | AR * Prob. | (Ar M - Erm) | (Ar M-Er M)*(Ar X - Erx) * Prob. | ||
Bull | 0.5 | -2% | -1.00% | 0.10% | 11.00% | 5.50% | 3.50% | -0.08% | ||
Normal | 0.3 | 18% | 5.40% | 0.73% | 8.00% | 2.40% | 0.50% | 0.02% | ||
Bear | 0.2 | -10% | -2.00% | 0.31% | -2.00% | -0.40% | -9.50% | 0.24% | ||
2.40% | 1.13% | 7.50% | -5.50% | 0.18% | ||||||
ER = sum= | 2.40% | |||||||||
Std. Dev. | 1.13% | |||||||||
Covariance = | 0.18% | |||||||||
Security Y | ||||||||||
Actual ret | Exp. Ret | Std Dev. | Actural retu | Exp. Ret | Covariance with X and Market | |||||
State | Prob. | AR | AR * Prob. | (AR-ER)^2*Prob. | Ar M | AR * Prob. | (Ar M - Erm) | (Ar M-Er M)*(Ar Y - Er Y) * Prob. | ||
Bull | 0.5 | 25% | 12.50% | 0.78% | 11.00% | 5.50% | 3.50% | 0.22% | ||
Normal | 0.3 | 10% | 3.00% | 0.02% | 8.00% | 2.40% | 0.50% | 0.00% | ||
Bear | 0.2 | -15% | -3.00% | 1.51% | -2.00% | -0.40% | -9.50% | 0.52% | ||
12.50% | 2.31% | 7.50% | -5.50% | 0.74% | R | |||||
ER = sum= | 12.50% | |||||||||
Std. Dev. | 2.31% | |||||||||
Covariance = | 0.74% | |||||||||
Market | ||||||||||
Actual ret | Exp. Ret | Std Dev. | ||||||||
State | Prob. | AR | AR * Prob. | (AR-ER)^2*Prob. | ||||||
Bull | 0.5 | 11% | 5.50% | 0.06% | ||||||
Normal | 0.3 | 8% | 2.40% | 0.00% | ||||||
Bear | 0.2 | -2% | -0.40% | 0.18% | ||||||
7.50% | 0.24% | |||||||||
ER = sum= | 7.50% | |||||||||
Std. Dev. | 0.24% | |||||||||
Part (a) | ||||||||||
Capital Market Equation = Risk free rate of return + Std. De. Stock * ( Return of market - Risk free return)/ Std. Dev. Market | ||||||||||
Std. dev. Stock is variable figure. So Capital market equation shall be | ||||||||||
5 + S.D. stock * (7.50 - 5) /0.24 | ||||||||||
5 +( S.D. Stock * 10.4167) | ||||||||||
So, Capital market equation is 5 + ( σS * 10.4167) | ||||||||||
Part (b) | ||||||||||
Beta of X = | Covariance of X with market / (Std. Dev. Of Market)^2 | |||||||||
0.18/(0.24)^2 | ||||||||||
3.12500 | ||||||||||
CAPM equation = Risk free rate of return + (Beta * (Market return - Risk free return) | ||||||||||
5 + (3.125 * (7.50 - 5) | ||||||||||
Required return | 12.8125 | |||||||||
Expected return = | 2.40% | |||||||||
Expected return is less than required rate of return. So security X is not fairly priced. It is over priced. | ||||||||||
Beta of Y = | Covariance of Y with Market / (std. dev. Of market)^2 | |||||||||
12.84722 | ||||||||||
CAPM equation = Risk free rate of return + (Beta * (Market return - Risk free return) | ||||||||||
5 + (12.84722 * (7.50 - 5) | ||||||||||
Required return | 37.11806 | |||||||||
Expected return | 12.50% | |||||||||
Expected return is less than required rate of return. So security X is not fairly priced. It is over priced. |