In: Statistics and Probability
A sample of 37 observations is selected from one population with a population standard deviation of 4.0. The sample mean is 100.5. A sample of 56 observations is selected from a second population with a population standard deviation of 4.4. The sample mean is 98.6. Conduct the following test of hypothesis using the 0.05 significance level.
H0 : μ1 = μ2
H1 : μ1 ≠ μ2
Is this a one-tailed or a two-tailed test?
One-tailed test
Two-tailed test
State the decision rule. (Negative values should be indicated by a minus sign. Round your answers to 2 decimal places.)
Compute the value of the test statistic. (Round your answer to 2 decimal places.)
What is your decision regarding H0?
Reject H0
Do not reject H0
What is the p-value? (Round your answer to 4 decimal places.)
a) gtwo tailed test
b)
α=0.05
reject Ho, if z <-1.96 or z >1.96
c)
sample #1   ------->      
       
mean of sample 1,    x̅1=  
100.5000          
population std dev of sample 1,   σ1 =   
4          
size of sample 1,    n1=   37  
       
          
       
sample #2   --------->      
       
mean of sample 2,    x̅2=   98.6000  
       
population std dev of sample 2,   σ2 =   
4.4          
size of sample 2,    n2=   56  
       
          
       
difference in sample means = x̅1 - x̅2 =   
100.5   -   98.6   =  
1.9
          
       
std error , SE =    √(σ1²/n1+σ2²/n2) =   
0.8821          
          
       
Z-statistic = ((x̅1 - x̅2)-µd)/SE =   
1.9   /   0.8821   =  
2.15
d)
reject Ho
(because z stat > 1.96)
e) p-value = 0.0312 [excel formula =2*NORMSDIST(z)]