Question

In: Advanced Math

4. Use a proof by contradiction to show that the square root of 3 is irrational....

4. Use a proof by contradiction to show that the square root of 3 is irrational. You may use the following fact: For any integer k, if k2 is a multiple of 3, then k is a multiple of 3. Hint: The proof is very similar to the proof that √2 is irrational.

5. Use a direct proof to show that the product of a rational number and an integer must be a rational number.

6. Use a proof by contradiction to show that the sum of an integer and an irrational number must be irrational.

Solutions

Expert Solution


Related Solutions

Prove that √3 is irrational using contradiction. You can use problem 4 as a lemma for...
Prove that √3 is irrational using contradiction. You can use problem 4 as a lemma for this. Problem 4, for context is Prove that if n2 is divisible by 3, then n is divisible by 3.
Use proof by contradiction to show that a cycle graph with an odd number of nodes...
Use proof by contradiction to show that a cycle graph with an odd number of nodes is not 2-colorable.
Discrete Structures Use a proof by contraposition to show if x3 + 3x is an irrational...
Discrete Structures Use a proof by contraposition to show if x3 + 3x is an irrational number then so is x, for any real number x.
Give a proof by contradiction to show that if two lines l and m are cut...
Give a proof by contradiction to show that if two lines l and m are cut by a transversal in such a way that the alternate interior angles, x and y, have the same measure, then the lines are parallel. Write the "if, then" statement for the proof by contradiction and the proof.
Contradiction proof conception Prove: If A is true, then B is true Contradiction: If A is...
Contradiction proof conception Prove: If A is true, then B is true Contradiction: If A is true, then B is false. so we suppose B is false and follow the step to prove. At the end we get if A is true then B is true so contradict our assumption However, Theorem: Let (xn) be a sequence in R. Let L∈R. If every subsequence of (xn) has a further subsequence that converges to L, then (xn) converges to L. Proof:  Assume,...
For each of the statements, begin a proof by contraposition and a proof by contradiction. This...
For each of the statements, begin a proof by contraposition and a proof by contradiction. This will include rewriting the statement, writing the assumptions, and writing what needs to be shown. From there, pick one of the two methods and finish the proof. a) For all integers m and n, if m + n is even the m and n are both even or m and n are both odd. b) For all integers a, b, and c, if a...
Prove by contradiction, every real solution of x3+x+3=0 is irrational.
Prove by contradiction, every real solution of x3+x+3=0 is irrational.
3. To begin a proof by contradiction for “If n is even then n+1 is odd,”...
3. To begin a proof by contradiction for “If n is even then n+1 is odd,” what would you “assume true? 4. Prove that the following is not true by finding a counterexample. “The sum of any 3 consecutive integers is even" 5. Show a Proof by exhaustion for the following: For n = 2, 4, 6, n²-1 is odd 6.  Show an informal Direct Proof for “The sum of 2 even integers is even.” Recursive Definitions 7.  The Fibonacci Sequence is...
Show that for any square-free integer n > 1, √ n is an irrational number
Show that for any square-free integer n > 1, √ n is an irrational number
write a function to determine the square root of a number. The square root of a...
write a function to determine the square root of a number. The square root of a number can be approximated by repeated calculation using the formula NG = 0.5(LG + N/LG) where NG stands for the next guess and LG stands for the last guess. The loop should repeat until the difference between NG and LG is less than 0.00001. Use an initial guess of 1.0. Write a driver program to test your square root function. I WANT THIS PROGRAM...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT