Question

In: Advanced Math

Prove by contradiction, every real solution of x3+x+3=0 is irrational.

Prove by contradiction, every real solution of x3+x+3=0 is irrational.

Solutions

Expert Solution

Proof that every real solution of x^3+x+3=0 is irrational: (Proof by Contradiction)

  • Assume to the contrary there is a rational number x=p/q, in reduced form, with p and q not equal to zero, that satisfies the equation. Then, we have p3/q3 + p/q+ 3 = 0. After multiplying each side of the equation by q3, we get the equation;

p3 + p q2 + 3q3 = 0

  • There are four cases to consider :

(1) If p and q are both odd, then the left hand side of the above equation is odd. But zero is not odd, which leaves us with a contradiction.

(2) If p is even and q is odd, then the left hand side is odd, again a contradiction.

(3) If p is odd and q is even, we get the same contradiction.

(4) If p even and q even, which is not possible because we assumed that p/q is in reduced form.

So as in four cases we got contradictory the assumption that root of 'x' is rational is false. That implies roots of 'x' in the given equation are irrational.

  HENCE PROVED


Related Solutions

Prove that √3 is irrational using contradiction. You can use problem 4 as a lemma for...
Prove that √3 is irrational using contradiction. You can use problem 4 as a lemma for this. Problem 4, for context is Prove that if n2 is divisible by 3, then n is divisible by 3.
4. Use a proof by contradiction to show that the square root of 3 is irrational....
4. Use a proof by contradiction to show that the square root of 3 is irrational. You may use the following fact: For any integer k, if k2 is a multiple of 3, then k is a multiple of 3. Hint: The proof is very similar to the proof that √2 is irrational. 5. Use a direct proof to show that the product of a rational number and an integer must be a rational number. 6. Use a proof by...
Prove that: a) |sinx|<= |x| b) x = sin x has only one solution in real...
Prove that: a) |sinx|<= |x| b) x = sin x has only one solution in real number using mean value theorem
Prove that for all real x, we have |x−1|+|x + 2|≥ 3.
Prove that for all real x, we have |x−1|+|x + 2|≥ 3.
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
PROOFS: 1. State the prove The Density Theorem for Rational Numbers 2. Prove that irrational numbers are dense in the set of real numbers
  PROOFS: 1. State the prove The Density Theorem for Rational Numbers 2. Prove that irrational numbers are dense in the set of real numbers 3. Prove that rational numbers are countable 4. Prove that real numbers are uncountable 5. Prove that square root of 2 is irrational
Suppose that x is real number. Prove that x+1/x =2 if and only if x=1. Prove...
Suppose that x is real number. Prove that x+1/x =2 if and only if x=1. Prove that there does not exist a smallest positive real number. Is the result still true if we replace ”real number” with ”integer”? Suppose that x is a real number. Use either proof by contrapositive or proof by contradiction to show that x3 + 5x = 0 implies that x = 0.
Prove or disprove the statements: (a) If x is a real number such that |x +...
Prove or disprove the statements: (a) If x is a real number such that |x + 2| + |x| ≤ 1, then x 2 + 2x − 1 ≤ 2. (b) If x is a real number such that |x + 2| + |x| ≤ 2, then x 2 + 2x − 1 ≤ 2. (c) If x is a real number such that |x + 2| + |x| ≤ 3, then x 2 + 2x − 1 ≤ 2....
Let x3 be the following vector: x3 <- c(0, 1, 1, 2, 2, 2, 3, 3,...
Let x3 be the following vector: x3 <- c(0, 1, 1, 2, 2, 2, 3, 3, 4) Imagine what a histogram of x3 would look like. Assume that the histogram has a bin width of 1. How many bars will the histogram have? Where will they appear? How high will each be? When you are done, plot a histogram of x3 with bin width = 1, and see if you are right. I need code help R programming
find real solutions : x^3+6x^2-6=0
find real solutions : x^3+6x^2-6=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT