In: Finance
What must be the end-of-the-month mortgage payment amount required to repay a loan of $52000 in 25 years? Assume k = 0.12 with monthly compounding.
Round your final answer to 2 decimal places.
Monthly rate(M)= | yearly rate/12= | 1.00% | Monthly payment= | 5514.76 | |
Month | Beginning balance (A) | Monthly payment | Interest = M*A | Principal paid | Ending balance |
1 | 525000.00 | 5514.76 | 5250.00 | 264.76 | 524735.24 |
2 | 524735.24 | 5514.76 | 5247.35 | 267.41 | 524467.83 |
3 | 524467.83 | 5514.76 | 5244.68 | 270.08 | 524197.74 |
4 | 524197.74 | 5514.76 | 5241.98 | 272.79 | 523924.96 |
5 | 523924.96 | 5514.76 | 5239.25 | 275.51 | 523649.44 |
6 | 523649.44 | 5514.76 | 5236.49 | 278.27 | 523371.17 |
7 | 523371.17 | 5514.76 | 5233.71 | 281.05 | 523090.12 |
8 | 523090.12 | 5514.76 | 5230.90 | 283.86 | 522806.26 |
9 | 522806.26 | 5514.76 | 5228.06 | 286.70 | 522519.56 |
10 | 522519.56 | 5514.76 | 5225.20 | 289.57 | 522229.99 |
11 | 522229.99 | 5514.76 | 5222.30 | 292.46 | 521937.53 |
12 | 521937.53 | 5514.76 | 5219.38 | 295.39 | 521642.14 |
.
.
.
292 | 47239.56 | 5514.76 | 472.40 | 5042.37 | 42197.19 |
293 | 42197.19 | 5514.76 | 421.97 | 5092.79 | 37104.40 |
294 | 37104.40 | 5514.76 | 371.04 | 5143.72 | 31960.68 |
295 | 31960.68 | 5514.76 | 319.61 | 5195.16 | 26765.52 |
296 | 26765.52 | 5514.76 | 267.66 | 5247.11 | 21518.42 |
297 | 21518.42 | 5514.76 | 215.18 | 5299.58 | 16218.84 |
298 | 16218.84 | 5514.76 | 162.19 | 5352.57 | 10866.26 |
299 | 10866.26 | 5514.76 | 108.66 | 5406.10 | 5460.16 |
300 | 5460.16 | 5514.76 | 54.60 | 5460.16 | 0.00 |
Where |
Interest paid = Beginning balance * Monthly interest rate |
Principal = Monthly payment – interest paid |
Ending balance = beginning balance – principal paid |
Beginning balance = previous Month ending balance |