In: Statistics and Probability
A nationwide sample of influential Liberals and Conservatives was asked as a part of a comprehensive survey whether they favoured lowering environmental standards so that high-sulphur coal could be burned in coal-fired power plants. The results were:
| LIBERALS | CONSERVATIVES | |
| NUMBER SAMPLED | 131 | 236 | 
| NUMBER IN FAVOUR | 30 | 83 | 
At the 0.01 level of significance, can we conclude that there is a larger proportion of Conservatives in favour of lowering the standards? Calculate and interpret the p-value.
1. Compute the value of the test statistic. (Negative answer should be indicated by a minus sign. Round the final answer to 2 decimal places.)
Value of test statistic ________ 2.33, 63.66 Incorrect
2. Calculate the p-value. (Round the z-value to 2 decimal places. Round the final answer to 4 decimal places.)
p-value is: _________ 0.0072, 0.101 Incorrect
1)
Ho:   p1 - p2 =   0  
       
Ha:   p1 - p2 <   0  
       
          
       
sample #1   ----->   liberals  
       
first sample size,     n1=  
131          
number of successes, sample 1 =     x1=  
30          
proportion success of sample 1 , p̂1=  
x1/n1=   0.2290      
   
          
       
sample #2   ----->  
conservative      
   
second sample size,     n2 =   
236          
number of successes, sample 2 =     x2 =
   83      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.3517      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.2290   -   0.3517   =  
-0.123
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.3079          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.0503      
   
Z-statistic = (p̂1 - p̂2)/SE = (   -0.123  
/   0.0503   ) =   -2.44
2)
p-value =       
0.0074   [Excel function
=NORMSDIST(z)