In: Statistics and Probability
As concrete cures, it gains strength. The following data represent the 7-day and 28-day strength in pounds per square inch (psi) of a certain type of concrete.
Complete parts (a) through (f) below. 7-Day Strength (psi), x:3340 3380 2300 2890 2480 28-Day Strength (psi),y: 4630 5020 4070 4620 4120 Treating the 7-day strength as the explanatory variable, x, use technology to determine the estimates of β0 and β1. 0β≈b0= β1≈b1= P-Value: What is the 95% confidence interval about the slope of the true least-squares regression line? Upper/lower bound. Compute the standard error of the estimate, se= A normal probability plot suggests that the residuals are normally distributed. Determine sb1. sb1= A normal probability plot suggests that the residuals are normally distributed. Test whether a linear relation exists between 7-day strength and 28-day strength at the α=0.05 level of significance. State the null and alternative hypotheses. Reject or do not reject? What is the estimated mean 28-day strength of this concrete if the 7-day strength is 3000 psi?
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
3340 | 4630 | 213444.0000 | 19044.0000 | 63756.0000 |
3380 | 5020 | 252004.0000 | 278784.0000 | 265056.0000 |
2300 | 4070 | 334084.0000 | 178084.0000 | 243916.0000 |
2890 | 4620 | 144.0000 | 16384.0000 | 1536.0000 |
2480 | 4120 | 158404.0000 | 138384.0000 | 148056.0000 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 14390.00 | 22460.00 | 958080.00 | 630680.00 | 722320.00 |
mean | 2878.00 | 4492.00 | SSxx | SSyy | SSxy |
sample size , n = 5
here, x̅ = Σx / n= 2878.000 ,
ȳ = Σy/n =
4492.000
SSxx = Σ(x-x̅)² = 958080.0000
SSxy= Σ(x-x̅)(y-ȳ) = 722320.0
estimated slope , ß1 = SSxy/SSxx =
722320.0 / 958080.000
= 0.75392
intercept, ß0 = y̅-ß1* x̄ =
2322.20524
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
169.416 /√ 958080.00
= 0.1731
t stat = estimated slope/std error =ß1 /Se(ß1) =
0.7539 / 0.1731 =
4.3559
t-critical value= 3.182 [excel function:
=T.INV.2T(α,df) ]
Degree of freedom ,df = n-2= 3
p-value = 0.022358
-----------
confidence interval for slope
α= 0.05
t critical value= t α/2 =
3.182 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
169.41590 /√ 958080.00
= 0.173
margin of error ,E= t*std error = 3.182
* 0.173 = 0.551
estimated slope , ß^ = 0.7539
lower confidence limit = estimated slope - margin of error
= 0.7539 - 0.551
= 0.203
upper confidence limit=estimated slope + margin of error
= 0.7539 + 0.551
= 1.305
---------
std error ,Se = √(SSE/(n-2)) =
169.4159
----------
estimated std error of slope,Sb1 = Se/√Sxx = 169.41590 /√ 958080.00 = 0.173
---------
Ho: ß1= 0
H1: ß1╪ 0
n= 5
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
169.416 /√ 958080.00
= 0.1731
t stat = estimated slope/std error =ß1 /Se(ß1) =
0.7539 / 0.1731 =
4.3559
t-critical value= 3.182 [excel function:
=T.INV.2T(α,df) ]
Degree of freedom ,df = n-2= 3
p-value = 0.022358
decison : p-value<α , reject Ho
--------
Predicted Y at X= 3000 is
Ŷ = 2322.2052 +
0.7539 *3000= 4583.9788