Question

In: Advanced Math

Prove: Every root field over F is the root field of some irreducible polynomial over F....

Prove:

Every root field over F is the root field of some irreducible polynomial over F. (Hint: Use part 6 and Theorem 2.)

Solutions

Expert Solution


Related Solutions

Determine whether the polynomial f(x) is irreducible over the indicated field. (a) f(x) = 4x^ 3...
Determine whether the polynomial f(x) is irreducible over the indicated field. (a) f(x) = 4x^ 3 + 10x^2 + 16x − 11 over Q (b) f(x) = 7x^ 4 − 9x^ 2 + 6 over Q (c) f(x) = x^3 − x + 1 over Q (d) f(x) = x ^4 + 2x ^2 + 2 over Q (e) f(x) = x^ 4 + 2x^ 2 + 2 over C (f) f(x) = x ^4 + 2x^ 2 + 2...
Let f be an irreducible polynomial of degree n over K, and let Σ be the...
Let f be an irreducible polynomial of degree n over K, and let Σ be the splitting field for f over K. Show that [Σ : K] divides n!.
Prove that every polynomial having real coefficients and odd degree has a real root
  Problem: Prove that every polynomial having real coefficients and odd degree has a real root This is a problem from a chapter 5.4 'applications of connectedness' in a book 'Principles of Topology(by Croom)' So you should prove by using the connectedness concept in Topology, maybe.
A field F is said to be perfect if every polynomial over F is separable. Equivalently,...
A field F is said to be perfect if every polynomial over F is separable. Equivalently, every algebraic extension of F is separable. Thus fields of characteristic zero and finite fields are perfect. Show that if F has prime characteristic p, then F is perfect if and only if every element of F is the pth power of some element of F. For short we write F = F p.
Does every polynomial equation have at least one real root? a. Why must every polynomial equation...
Does every polynomial equation have at least one real root? a. Why must every polynomial equation of degree 3 have at least one real root? b. Provide an example of a polynomial of degree 3 with three real roots. How did you find this? c. Provide an example of a polynomial of degree 3 with only one real root. How did you find this?
*Please show work and explain* Prove that a vector space V over a field F is...
*Please show work and explain* Prove that a vector space V over a field F is isomorphic to the vector space L(F,V) of all linear maps from F to V.
If F is a field and ?(?),?(?),h(?) ∈ ?[?]; and h(?) ≠ 0. a) Prove that...
If F is a field and ?(?),?(?),h(?) ∈ ?[?]; and h(?) ≠ 0. a) Prove that [?(?)] = [?(?)] if and only if ?(?) ≡ ?(?)(???( (h(?)). b) Prove that congruence classes modulo h(?) are either disjoint or identical.
An element a in a field F is called a primitive nth root of unity if...
An element a in a field F is called a primitive nth root of unity if n is the smallest positive integer such that an=1. For example, i is a primitive 4th root of unity in C, whereas -1 is not a primitive 4th root of unity (even though (-1)4=1). (a) Find all primitive 4th roots of unity in F5 (b) Find all primitive 3rd roots of unity in F7 (c) Find all primitive 6th roots of unity in F7...
Determine whether the polynomial is reducible or irreducible in the given polynomial ring. Justify your answers....
Determine whether the polynomial is reducible or irreducible in the given polynomial ring. Justify your answers. (c) x^4 + 1 in Z5[x] (e) 2x^3 − 5x^2 + 6x − 2 in Z[x] (f) x^4 + 4x^3 + 6x^2 + 2x + 1 in Z[x]. Hint: Substitute x − 1 for x.
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT