Question

In: Math

Consider the function f = x + 6cos(3x) + 5sin(x) +5 has at least one zero...

Consider the function f = x + 6cos(3x) + 5sin(x) +5 has at least one zero for all real numbers. Why?

Solutions

Expert Solution


Related Solutions

consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x)...
consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x) c. what are the critical points of f(x) d. are the critical points a local min or local max or neither? e. find the inflection points f. if we define f(x) to have the domain of [2,50] compute the global extreme of f(x) on that interval
The function f(x)=3x+2 is one-to-one a) find the inverse of f b) State the domain and...
The function f(x)=3x+2 is one-to-one a) find the inverse of f b) State the domain and range of f c) State the domain and range of f-1 d) Graph f,f-1, and y=x on the same set of axes
find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
Consider the function f(x) = 3/(3x+ 4), c= 0 a)Find the power series for the function...
Consider the function f(x) = 3/(3x+ 4), c= 0 a)Find the power series for the function centered at c b)Determine the interval of convergence
Consider f(x) = 2 + 3x^2 − x^3
Consider f(x) = 2 + 3x2 − x3 a) Find local max and min values b) Find intervals of concavity and infection points
Consider the root of function f(x) = x 3 − 2x − 5. The function can...
Consider the root of function f(x) = x 3 − 2x − 5. The function can be rearranged in the form x = g(x) in the following three ways: (a) x = g(x) = x3 − x − 5 (b) x = g(x) = (x 3 − 5)/2 (c) x = g(x) = thirdroot(2x + 5) For each form, apply fixed-point method with an initial guess x0 = 0.5 to approximate the root. Use the error tolerance = 10-5 to...
Consider the optimization problem of the objective function f(x, y) = 3x 2 − 4y 2...
Consider the optimization problem of the objective function f(x, y) = 3x 2 − 4y 2 + xy − 5 subject to x − 2y + 7 = 0. 1. Write down the Lagrangian function and the first-order conditions. 1 mark 2. Determine the stationary point. 2 marks 3. Does the stationary point represent a maximum or a minimum? Justify your answer.
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
1. (8pt) Consider the function f(x) = (x + 3)(x + 5)^2 √ (7 − x)...
1. (8pt) Consider the function f(x) = (x + 3)(x + 5)^2 √ (7 − x) whose first and second derivatives are f'(x) = ((x + 5)(139 + 12x − 7x^2))/2 √ (7 − x) , f''(x) = (35x^3 − 225x^2 − 843x + 3481)/ 4(7 − x)^3/2 . Note: 35x 3 − 225x 2 − 843x + 3481 has three roots: x1 ≈ 7.8835, x2 ≈ −4.3531 and x3 ≈ 2.8982. (a) (1pt) What is the domain of f(x)?...
Consider the function f(x)=arctan [(x+6)/(x+5)] Express the domain of the function in interval notation: Find the...
Consider the function f(x)=arctan [(x+6)/(x+5)] Express the domain of the function in interval notation: Find the y-intercept: y= . Find all the x-intercepts (enter your answer as a comma-separated list): x= . Does f have any symmetries? f is even; f is odd; f is periodic; None of the above. Find all the asymptotes of f (enter your answers as comma-separated list; if the list is empty, enter DNE): Vertical asymptotes: ; Horizontal asymptotes: ; Slant asymptotes: . Determine the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT