In: Statistics and Probability
What data is selected to in excel to calculate MAD for part b?
The graduate assistant for the Santa Clara Broncos football team has compiled the following statistics: Year wins avg offensive yards avg interceptions 1 10 500 2 2 8 450 4 3 5 250 10 4 10 485 1 5 7 399 4 6 11 521 2 7 4 158 15 8 11 525 0 9 8 485 4 10 4 300 9 11 5 350 9 12 7 375 9 13 2 150 15 14 5 380 5 a. Using Excel, develop a linear regression model for wins, employing average offensive yards and average interceptions. b. Calculate the MAD for your model. c. Calculate R, F, and t statistics and interpret them.
a)
Excel > Data > Data Analysis > Regression
Excel output :
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.924900573 | |||||||
R Square | 0.855441069 | |||||||
Adjusted R Square | 0.829157627 | |||||||
Standard Error | 1.185422056 | |||||||
Observations | 14 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 2 | 91.47109148 | 45.73554574 | 32.54676731 | 2.4002E-05 | |||
Residual | 11 | 15.45747995 | 1.40522545 | |||||
Total | 13 | 106.9285714 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 0.268468656 | 5.412325642 | 0.049603197 | 0.961327822 | -11.64397976 | 12.18091707 | -11.64397976 | 12.18091707 |
avg offensive yards | 0.018557998 | 0.00997101 | 1.861195309 | 0.089633626 | -0.003388048 | 0.040504044 | -0.003388048 | 0.040504044 |
avg interceptions | -0.063321046 | 0.259241663 | -0.244254897 | 0.811529458 | -0.633908099 | 0.507266007 | -0.633908099 | 0.507266007 |
Wins = 0.2685 + 0.01856 * avg offensive yards - 0.0633 * avg interceptions
b)
Observation | Predicted wins | Residuals (yi-yexp) | ABS(Res) |
1 | 9.420825428 | 0.579174572 | 0.579174572 |
2 | 8.36628345 | -0.36628345 | 0.36628345 |
3 | 4.27475763 | 0.72524237 | 0.72524237 |
4 | 9.205776508 | 0.794223492 | 0.794223492 |
5 | 7.419825566 | -0.419825566 | 0.419825566 |
6 | 9.81054338 | 1.18945662 | 1.18945662 |
7 | 2.250816611 | 1.749183389 | 1.749183389 |
8 | 10.01141746 | 0.988582537 | 0.988582537 |
9 | 9.01581337 | -1.01581337 | 1.01581337 |
10 | 5.265978562 | -1.265978562 | 1.265978562 |
11 | 6.193878449 | -1.193878449 | 1.193878449 |
12 | 6.657828392 | 0.342171608 | 0.342171608 |
13 | 2.102352629 | -0.102352629 | 0.102352629 |
14 | 7.003902563 | -2.003902563 | 2.003902563 |
Average | 0.909719227 |
MAD = 0.9097
c)
From excel output table :
R = 0.9249 (Strong, Positive correlation)
If independent variable increases then Y variable increases vice versa
R^2 = 0.8554
85.54% variation in dependent variable is explained by set of independent variables
or
85.54% variation in dependent variable is explained by Regression model
F = 32.5468
P value = 0 < 0.05, Significant (at least one coefficient is different than 0)
t Stat | P-value | alpha 0.05 | Significant | |
Intercept | 0.049603 | 0.961328 | > alpha | No |
avg offensive yards | 1.861195 | 0.089634 | > alpha | No |
avg interceptions | -0.24425 | 0.811529 | > alpha | No |