In: Finance
Find the price for a call option with the following inputs:
Current stock price = $25 Strike price of option = $30
Time until option expires = 6 months Risk-free rate = 3%
Standard deviation of stock returns = 18%
Using the Black Scholes Option Pricing Model Formula
Given all the information above, what would be the value of a put option on the above stock with a strike price of $30?
As per Black Scholes Model | |||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | |||
Where | |||
S = Current price = | 25 | ||
t = time to expiry = | 0.5 | ||
K = Strike price = | 30 | ||
r = Risk free rate = | 3.0% | ||
q = Dividend Yield = | 0% | ||
σ = Std dev = | 18% | ||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | |||
d1 = (ln(25/30)+(0.03-0+0.18^2/2)*0.5)/(0.18*0.5^(1/2)) | |||
d1 = -1.250963 | |||
d2 = d1-σ*t^(1/2) | |||
d2 =-1.250963-0.18*0.5^(1/2) | |||
d2 = -1.378242 | |||
N(d1) = Cumulative standard normal dist. of d1 | |||
N(d1) =0.105474 | |||
N(d2) = Cumulative standard normal dist. of d2 | |||
N(d2) =0.084064 | |||
Value of call= 25*0.105474-0.084064*30*e^(-0.03*0.5) | |||
Value of call= 0.15 |
As per Black Scholes Model | |||
Value of put option = N(-d2)*K*e^(-r*t)-(S)*N(-d1) | |||
Where | |||
S = Current price = | 25 | ||
t = time to expiry = | 0.5 | ||
K = Strike price = | 30 | ||
r = Risk free rate = | 3.0% | ||
q = Dividend Yield = | 0% | ||
σ = Std dev = | 18% | ||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | |||
d1 = (ln(25/30)+(0.03-0+0.18^2/2)*0.5)/(0.18*0.5^(1/2)) | |||
d1 = -1.250963 | |||
d2 = d1-σ*t^(1/2) | |||
d2 =-1.250963-0.18*0.5^(1/2) | |||
d2 = -1.378242 | |||
N(-d1) = Cumulative standard normal dist. of -d1 | |||
N(-d1) =0.894526 | |||
N(-d2) = Cumulative standard normal dist. of -d2 | |||
N(-d2) =0.915936 | |||
Value of put= 0.915936*30*e^(-0.03*0.5)-25*0.894526 | |||
Value of put= 4.71 |