Question

In: Math

1. Evaluate the integral: ∫((e^(2x)−e^(−5x))^2+ ln(e^(1/x))) dx 2. Using cylindrical shells, find the volume of the...

1. Evaluate the integral: ∫((e^(2x)−e^(−5x))^2+ ln(e^(1/x))) dx

2. Using cylindrical shells, find the volume of the solid obtained by taking the region between y=x and y=x^2 for 1≤x≤3 and rotating it about the the line x=−4.

3. Find the average value of the function f(x) = 1/√x on the interval [0,4]. Then find c in [0,4] such that f(c) =f ave.

please help!

Solutions

Expert Solution


Related Solutions

1) Evaluate the integral from 0 to 1 (e^(2x) (x^2 + 4) dx) (a) What is...
1) Evaluate the integral from 0 to 1 (e^(2x) (x^2 + 4) dx) (a) What is the first step of your ‘new’ integral? (b) What is the final antiderivative step before evaluating? (c) What is the answer in simplified exact form? 2) indefinite integral (cos^2 2theta) / (cos^2 theta) dtheta (a) What is the first step of your ‘new’ integral? (b) What is the simplified integral before taking the antiderivative? (c) What is the answer in simplified form?
Evaluate the integral (x^3+2x^2-4x+5)/(3x^2+x-10)dx
Evaluate the integral (x^3+2x^2-4x+5)/(3x^2+x-10)dx
Evaluate the integral. ∫4−2. (1/(x+5)((x^2)+16)) dx
Evaluate the integral. ∫4−2. (1/(x+5)((x^2)+16)) dx
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral of (6dx)/(16+16x^2)
Let f(x) = (x − 1)2, g(x) = e−2x, and h(x) = 1 + ln(1 − 2x). (a) Find the linearizations of f, g, and h at  a =...
Let f(x) = (x − 1)2, g(x) = e−2x, and h(x) = 1 + ln(1 − 2x). (a) Find the linearizations of f, g, and h at  a = 0. Lf (x) =    Lg(x) =    Lh(x) =  (b) Graph f, g, and h and their linear approximations. For which function is the linear approximation best? For which is it worst? Explain. The linear approximation appears to be the best for the function  ? f g h since it is closer to  ? f g h for a larger domain than it is to  - Select - f and g g and h f and h . The approximation looks worst for  ? f g h since  ? f g h moves away from L faster...
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C...
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C for the constant of integration.) dx/sqrt(9x^2-16)^3 Evaluate the integral. (Use C for the constant of integration.) 3/(x(x+2)(3x-1))*dx
Use integration by parts to evaluate the integral: ∫ cos (ln(6x)) dx
Use integration by parts to evaluate the integral: ∫ cos (ln(6x)) dx
evaluate the indefinite integral. ∫10x2−49x+21/(x−3)(x2−2x−3)dx
evaluate the indefinite integral. ∫10x2−49x+21/(x−3)(x2−2x−3)dx
1114) intg{ 2x ln(x^2) dx } = (Ax^B)*(ln(x^2)+F) + C. Determine A,B,F. ans:3 1130) Evaluate intg_9_17{...
1114) intg{ 2x ln(x^2) dx } = (Ax^B)*(ln(x^2)+F) + C. Determine A,B,F. ans:3 1130) Evaluate intg_9_17{ (x^2 - 4x + 7) dx }. ans:1 1132) Integrate from 3 to 7 the function: ( 1 / (x^2 + 9x) ). Calculate a floating-point value. ans:1
Find the particular integral of the differential equation d2y/dx2 + 3dy/dx + 2y = e −2x...
Find the particular integral of the differential equation d2y/dx2 + 3dy/dx + 2y = e −2x (x + 1). show that the answer is yp(x) = −e −2x ( 1/2 x2 + 2x + 2) ]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT