Question

In: Finance

Rates of Return 1926-2013 World Portfolios US Markets Year World Equity Return in US Dollars World...

Rates of Return 1926-2013
World Portfolios US Markets
Year World Equity Return in US Dollars World Bond Return in US Dollars Small Stocks Large Stock Long-Term T-Bonds T-Bills Inflation Real T-bill Rates
1926 25.24 8.10 -8.91 12.21 4.54 3.19 -1.12 4.36
1927 23.15 9.62 33.99 35.99 8.11 3.12 -2.26 5.50
1928 28.62 2.44 51.46 39.29 -0.93 3.56 -1.16 4.77
1929 -12.56 3.45 -49.25 -7.66 4.41 4.75 0.59 4.14
1930 -22.6 6.04 -48.04 -25.90 6.22 2.41 -6.40 9.41
1931 -39.94 -12.32 -53.19 -45.56 -5.31 1.07 -9.32 11.45
1932 1.46 18.26 7.75 -9.14 11.89 0.96 -10.27 12.52
1933 70.81 29.26 159.05 54.56 1.03 0.3 0.76 -0.46
1934 0.15 3.87 28.47 -2.32 10.15 0.16 1.52 -1.33
1935 22.44 -1.41 68.82 45.67 4.98 0.17 2.99 -2.73
1936 18.84 -0.49 77.53 33.55 6.52 0.18 1.45 -1.25
1937 -17.7 -0.96 -54.27 -36.03 0.43 0.31 2.86 -2.48
1938 6.21 0.65 16.6 29.42 5.25 -0.02 -2.78 2.84
1939 -5.6 -5.11 -6.28 -1.06 5.90 0.02 0.00 0.02
1940 7.97 11.32 -15.26 -9.65 6.54 0 0.71 -0.71
1941 13.26 5.61 -12.66 -11.20 0.99 0.06 9.93 -8.98
1942 -0.56 -3.69 38.94 20.80 5.39 0.27 9.03 -8.04
1943 19.3 2.76 109.87 26.54 4.87 0.35 2.96 -2.53
1944 13.49 3.02 60.34 20.96 3.59 0.33 2.30 -1.92
1945 13.72 0.08 77.93 36.11 6.84 0.33 2.25 -1.87
1946 -16.91 -13.50 -13.16 -9.26 0.15 0.35 18.13 -15.05
1947 -1.09 -8.46 -1.52 4.88 -1.19 0.5 8.88 -7.70
1948 3.06 5.59 -5.84 5.29 3.07 0.81 2.73 -1.87
1949 17.35 1.83 21.22 18.24 6.03 1.1 -1.83 2.98
1950 24.44 2.52 46.86 32.68 -0.96 1.2 5.80 -4.35
1951 28.69 0.60 6.66 23.47 -1.95 1.49 5.97 -4.22
1952 14.21 4.73 5.05 18.91 1.93 1.66 0.91 0.75
1953 5.37 3.74 -5.59 -1.74 3.83 1.82 0.60 1.21
1954 48.2 7.66 63.49 52.55 4.88 0.86 -0.37 1.24
1955 22.94 0.20 24.61 31.44 -1.34 1.57 0.37 1.19
1956 8.62 -4.28 4.31 6.45 -5.12 2.46 2.83 -0.36
1957 -6.86 2.97 -13.99 -11.14 9.46 3.14 3.04 0.10
1958 36.78 -0.42 65.46 43.78 -3.71 1.54 1.76 -0.21
1959 24.96 0.47 21.83 12.95 -3.55 2.95 1.52 1.41
1960 7.71 10.46 -4.72 0.19 13.78 2.66 1.36 1.28
1961 19.86 1.99 29.48 27.63 0.19 2.13 0.67 1.45
1962 -7.2 9.59 -11.56 -8.79 6.81 2.73 1.23 1.48
1963 14.35 2.76 18.45 22.63 -0.49 3.12 1.65 1.45
1964 11.05 3.20 19.07 16.67 4.51 3.54 1.20 2.31
1965 10.49 2.84 39.2 12.50 -0.27 3.93 1.92 1.97
1966 -6.47 5.36 -6.94 -10.25 3.70 4.76 3.36 1.36
1967 23.75 -3.28 104.33 24.11 -7.41 4.21 3.28 0.90
1968 19.92 2.11 50.43 11.00 -1.20 5.21 4.71 0.48
1969 -6.21 -2.35 -31.43 -8.33 -6.52 6.58 5.90 0.64
1970 -5.71 9.76 -17.88 4.10 12.69 6.52 5.57 0.90
1971 15.59 15.01 18.07 14.17 17.47 4.39 3.27 1.09
1972 19.96 7.90 0.14 19.14 5.55 3.84 3.41 0.42
1973 -17.08 4.39 -38.23 -14.75 1.40 6.93 8.94 -1.85
1974 -27.83 5.08 -27.39 -26.40 5.53 8 12.10 -3.65
1975 28.91 7.44 59.79 37.26 8.50 5.8 7.13 -1.24
1976 10.31 11.26 49.06 23.98 11.07 5.08 5.04 0.04
1977 -2.46 16.04 27.6 -7.26 0.90 5.12 6.68 -1.46
1978 12.68 13.56 24.92 6.50 -4.16 7.18 8.99 -1.66
1979 7.21 0.41 42.25 18.77 9.02 10.38 13.26 -2.54
1980 21.46 2.84 40.19 32.48 13.17 11.24 12.35 -0.99
1981 -7.92 -3.78 -1.69 -4.98 3.61 14.71 8.91 5.32
1982 5.82 21.95 27.9 22.09 6.52 10.54 3.83 6.47
1983 18.56 1.73 34.44 22.37 -0.53 8.8 3.79 4.83
1984 1.77 7.50 -10.57 6.46 15.29 9.85 4.04 5.58
1985 37.02 34.12 29.19 32.00 32.68 7.72 3.79 3.79
1986 39.11 30.56 3.7 18.40 23.96 6.16 1.19 4.91
1987 14.34 18.86 -14.15 5.34 -2.65 5.47 4.33 1.09
1988 21.19 4.32 18.73 16.86 8.40 6.35 4.41 1.86
1989 14.75 6.70 9.13 31.34 19.49 8.37 4.64 3.56
1990 -18.65 12.70 -27.28 -3.20 7.13 7.81 6.26 1.46
1991 16.00 15.35 49.08 30.66 18.39 5.6 2.98 2.54
1992 -7.14 6.30 21.17 7.71 7.79 3.51 2.97 0.53
1993 20.39 10.42 19.12 9.87 15.48 2.9 2.81 0.09
1994 3.36 1.56 -5.64 0.41 -7.18 3.9 2.60 1.27
1995 21.11 20.18 34.2 38.05 31.67 5.6 2.53 2.99
1996 14.02 5.11 16.56 22.50 -0.81 5.21 3.38 1.77
1997 16.32 1.92 23.62 33.46 15.08 5.26 1.70 3.50
1998 24.77 13.76 -7.48 28.70 13.52 4.86 1.61 3.20
1999 25.33 -6.46 40.59 20.38 -8.74 4.68 2.68 1.95
2000 -12.72 2.58 -6.33 -9.74 20.27 5.89 3.44 2.37
2001 -16.34 -2.19 29.26 -11.76 4.21 3.83 1.60 2.19
2002 -19.28 23.41 -12.04 -21.58 16.79 1.65 2.48 -0.81
2003 33.32 13.27 75.4 28.18 2.38 1.02 2.04 -0.99
2004 15.27 8.27 14.59 10.69 7.71 1.2 3.34 -2.07
2005 9.97 -4.20 3.22 4.83 6.50 2.98 3.34 -0.35
2006 20.57 3.50 17.31 15.84 -1.21 4.8 2.52 2.22
2007 9.72 15.83 -8.17 5.14 10.25 4.66 4.11 0.53
2008 -39.48 2.55 -39.91 -36.79 1.34 1.6 -0.02 1.62
2009 30.16 7.46 36.38 26.34 -12.92 0.1 2.82 -2.64
2010 12.17 5.18 29.67 15.05 9.38 0.12 1.42 -1.28
2011 -4.77 10.65 -12.17 1.90 14.0 0.04 3.02 -2.89
2012 16.48 6.95 16.84 15.99 7.3 0.06 1.77 -1.68
2013 27.10 -4.84 46.9 32.31 -9.3 0.02 1.51 -1.47
Average Since 1956 4.81 3.84 0.94
1926-2013 9.86 5.70 17.48 11.88 5.37 3.54 3.05 0.59
1926-1955 10.40 2.85 20.82 12.77 3.53 1.10 1.51 -0.10
1956-1985 8.97 6.22 18.06 10.84 4.96 5.84 4.85 0.98
1986-2013 10.25 8.20 13.30 12.03 7.79 3.70 2.77 0.91

1. Calculate the excess returns during the period of study

2. Calculate the average excess return, standard deviation, Skewness and kurtosis using the excel functions

3. Calculate the 5% Value at Risk (VaR) assuming

a) distribution is normal

b) distribution is not normal

c) comment on your findings

Solutions

Expert Solution


Related Solutions

An investment company knows that the rates of return on its portfolios have a mean of...
An investment company knows that the rates of return on its portfolios have a mean of 7.45 percent, with a standard deviation of 3.82 percent. The company selects a sample of 144 portfolios to analyze. Assume the company has tens of thousands of portfolios. (Careful- "percent" is just a unit here!) You do NOT need to check CLT here. A. What is the probability that the mean of the sample is smaller than 7 percent? B. What is the probability...
Based on current dividend yields and expected capital gains, the expected rates of return on portfolios...
Based on current dividend yields and expected capital gains, the expected rates of return on portfolios A and B are 11% and 14%, respectively. The beta of A is .8, while that of B is 1.5. The T-bill rate is currently 6%, while the expected rate of return of the S&P 500 index is 12%. The standard deviation of portfolio A is 10% annually, while that of B is 31%, and that of the index is 20%. a. If you...
Consider the following rates of return: Year / Large Company Stocks / US Treasury Bill 1...
Consider the following rates of return: Year / Large Company Stocks / US Treasury Bill 1 3.99 % 4.59 % 2 14.16 4.94 3 19.25 3.86 4 –14.43 6.99 5 –31.92 5.30 6 37.49 6.20 a. Calculate the arithmetic average returns for large-company stocks and T-bills over this period. b. Calculate the standard deviation of the returns for large-company stocks and T-bills over this period. c-1 Calculate the observed risk premium in each year for the large-company stocks versus the...
One thing moving the US equity markets is supply and demand, expatiate on this.
One thing moving the US equity markets is supply and demand, expatiate on this.
Under the M&M world with perfect capital markets, the cost of equity is independent of its...
Under the M&M world with perfect capital markets, the cost of equity is independent of its capital structure. True False Under the M&M world with perfect capital markets, a firm’s value should rise with increased leverage because debt is cheaper than equity. True False Under the M&M world with perfect capital markets, a firm’s average cost of capital (i.e. pre-tax WACC) falls for increases in debt as long as the firm avoids truly excessive leverage. True False
VS uses Direct-labor cost in dollars to allocate its overhead. For the year of 2013; •...
VS uses Direct-labor cost in dollars to allocate its overhead. For the year of 2013; • No beginning inventories • Estimated overhead at Jan 1st , $2,000,000 and estimated Direct-labor cost, $400,000 • Actual overhead for the year, $2,825,000 • During the year, VS started producing 30,000, finished 25,000 and sold 21,000 units • Other information for the year: WIP FG COGS DM in $85,000 $62,000 $320,000 DL in $60,000 $57,000 $468,000 VS uses the prorate approach to distribute overapplied...
Please describe the various forms of measures that we can implement within equity and fixed income portfolios that would help us monitor the levels of risks within the portfolios (describe these measures)
Essay questions:Please describe the various forms of measures that we can implement within equity and fixed income portfolios that would help us monitor the levels of risks within the portfolios (describe these measures).
Current US Treasury Markets indicate that the bonds will rise and proxies for risk-free-rates will fall....
Current US Treasury Markets indicate that the bonds will rise and proxies for risk-free-rates will fall. a. How will this impact nominal rates and risk premiums? b. What are the implications of falling risk-free-rates?
Private Equity investors often require internal rates of return of more that 25% on the investments...
Private Equity investors often require internal rates of return of more that 25% on the investments they make. 1.How are these required rates of return justified? 2.Explain how the practice of demanding a high risk premium is inconsistent with using expected cash flow forecasts that include a realistic view of the possible downside of the investment to value a business.
These are the yearly returns for a mutual fund. . Year Return 2013 15.00% 2014 -8.00%...
These are the yearly returns for a mutual fund. . Year Return 2013 15.00% 2014 -8.00% 2015 7.50% 2016 9.11% 2017 10.00% 2018 -7.62% 2019 4.00% Calculate the geometric return. For the Fidelity mutual fund exercises, this is also known as the "average annual return". Select one: a. More than 5.0% b. Less than 2.0% c. 2.0% to 3.0% d. 4.0% to 5.0% e. 3.0% to 4.0%
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT