In: Statistics and Probability
The monthly returns for a financial advisory service can be
modeled by a Normal distribution with a mean of $119 and standard
deviation of $91, per $10,000 invested. Find the following
boundaries: (use 4 decimals for all answers)
(a) the highest 10% of monthly returns:_______
(b) the lowest 10% of monthly returns: _______
(c) the highest 20% of monthly returns: _________
(d) the middle 60% of monthly returns: _______ and________ (Enter
the lower value first.)
Solution :
Given that,
mean = = 119
standard deviation = = 91
Using standard normal table,
a ) P( Z > z) = 10%
P(Z > z) = 0.10
1 - P( Z < z) = 0.10
P(Z < z) = 1 - 0.10
P(Z < z) = 0.90
z = 1.282
Using z-score formula,
x = z * +
x = 1.28 * 91 + 119
x = 235.4800
b ) P( Z < z) = 10%
P(Z < z) = 0.10
z = -1.28
Using z-score formula,
x = z * +
x = -1.28* 91 + 119
x = 2.5200
c ) P( Z > z) = 20%
P(Z > z) = 0.20
1 - P( Z < z) = 0.20
P(Z < z) = 1 - 0.20
P(Z < z) = 0.80
z = 0.84
Using z-score formula,
x = z * +
x = 0.84 * 91 + 119
x = 195.4400
d ) P(-z < Z < z) = 60%
P(Z < z) - P(Z < z) = 0.60
2P(Z < z) - 1 = 0.60
2P(Z < z ) = 1 + 0.60
2P(Z < z) = 1.60
P(Z < z) = 1.60 / 2
P(Z < z) = 0.80
z = -0.84 and z = 0.84
sing z-score formula,
x = z * +
x = -0.84 * 91 + 119
x = 42.5600
Using z-score formula,
x = z * +
x = 0.84 * 91 + 119
x = 195.4400