In: Statistics and Probability
Porosity% | Mean diameter(mm) | |
A | 18 | 12 |
B | 18.3 | 9.7 |
C | 16.3 | 7.3 |
D | 6.9 | 5.3 |
E | 17.1 | 10.9 |
F | 20.4 | 16.8 |
1.
a. Construct an ANOVA table to assess the relationship between porosity and mean pore diameter
b. Indicate your hypotheses
c. Make sure you can do the computations by hand. Show your work (you can doublecheck using software)
d. Compute an F test statistic. Using a Type I error rate of 10% (as opposed to the more traditional 5%), conclude and interpret.
e. Compute the P-value. Interpret it.
f. Compute the coefficient of determination and interpret it.
(a)
Source | SS | df | MS | F | p-value |
Regression | 72.0410 | 1 | 72.0410 | 7.11 | .0561 |
Residual | 40.5523 | 4 | 10.1381 | ||
Total | 112.5933 | 5 |
(b) The hypothesis being tested is:
H0: µ1 = µ2
Ha: Not all means are not equal
(c)
r² | 0.640 | |||||
r | 0.800 | |||||
Std. Error | 3.184 | |||||
n | 6 | |||||
k | 1 | |||||
Dep. Var. | Porosity% | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 72.0410 | 1 | 72.0410 | 7.11 | .0561 | |
Residual | 40.5523 | 4 | 10.1381 | |||
Total | 112.5933 | 5 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=4) | p-value | 95% lower | 95% upper |
Intercept | 6.3518 | |||||
Mean diameter(mm) | 0.9498 | 0.3563 | 2.666 | .0561 | -0.0395 | 1.9391 |
(d) The F test statistic is 7.11.
(e) The p-value is 0.0561.
(f) 0.640.