Question

In: Physics

A magnifying glass is a single convex lens with a focal length of f = +9.50...

A magnifying glass is a single convex lens with a focal length of f = +9.50 cm. (Assume the person using the magnifying glass has a near point of 25 cm and the magnifying glass is directly in front of the person's eyes.)

(a) What is the angular magnification when this lens forms a (virtual) image at ???


How far from the object should the lens be held?


(b) What is the angular magnification when this lens forms a (virtual) image at the person's near point?


How far from the object should the lens be held in this case?

Solutions

Expert Solution

given that, f = 9.5 cm

(a) When the image is at infinite di = ?

angaular magnification given as

M = (1/f - 1/di) N

                        = (1/f - 1/?) N

= ( 1/f -0)N = N/f

then   M = 25 cm / 9.5 cm = 2.63

To obtain the image is at infinte the object should be at focal point of the lens

then from lens formula  

1/f = 1/do + 1/di

1/f = 1/do + 1/?

thus the object distance do = f = 9.5 cm

(b) When the image is at di = - N = -25cm

       then the magnification M = (1/f - 1/di) N

                                              = ( 1/f - 1/-N) N

                                              = (N/f )+ 1

                                              = (25 / 9.5) + 1

                                               = 3.63

Now from lens formula

                 1/f = 1/do + 1/di

    then the object distance is

             do = f di / di -f

                  = (9.5)(25) / (25-9.5) = 15.322 cm


Related Solutions

a convex lens has a focal length f. if an object is placed at a distance...
a convex lens has a focal length f. if an object is placed at a distance beyond 2f from the lens on the principle axis, the image is located at a distance from the lens
An object is located to the left of a convex lens whose focal length is f=34...
An object is located to the left of a convex lens whose focal length is f=34 cm. The magnification (m) produced by the lens is 4.0. Find an expression for magnification in terms of “f” and object distance (do). To increase the magnification to 5.0, calculate the distance through which the object should be moved. Also explain your result with free hand ray diagram. At what position of the object the magnification becomes infinity?
7. A convex lens has a focal length of f= 50cm. An object is placed 40cm...
7. A convex lens has a focal length of f= 50cm. An object is placed 40cm from the lens.Compute the location of the image. -200 cm 200 cm 22.2 cm -22.2 cm 8. An LED flashlight produces a beam with an intensity of I= 7.36W/m2 when it illuminates a circular piece of matte black painted steel having a radius of r = 40cm. If the steel has a mass of m= 5kg, what is the acceleration of the mirror due...
A single bi-convex lens (a lens with two convex surfaces) made of glass (index of refraction...
A single bi-convex lens (a lens with two convex surfaces) made of glass (index of refraction n = 1.55) has surfaces with radii of curvature r1 = 27.0 cm and r2 = -27.0 cm. a)What is the focal length of the lens in air? b)If an object is placed at p = 39.7 cm from the lens, where is the image? (Use plus sign for a real image, and minus sign for a virtual image.) c)If the object has a...
A symmetric double convex lens with a focal length of 28.0 cmcm is to be made...
A symmetric double convex lens with a focal length of 28.0 cmcm is to be made from glass with an index of refraction of 1.51. Part A What should be the radius of curvature for each surface? Express your answer to two significant figures and include the appropriate units.
Consider a double convex lens with a focal length of 35 cm. If a marble is...
Consider a double convex lens with a focal length of 35 cm. If a marble is placed 85 cm from the lens, what is the image distance? Enter your answer in cm.
1. Consider a convex lens with a focal length of 5.50 cm. An object is located...
1. Consider a convex lens with a focal length of 5.50 cm. An object is located at 13.50 cm. The object is 6.00 cm tall. Draw the ray diagram to scale. Determine the image distance, the height of the image, the magnification and the characteristices of the image. Pay attention to the sign conventions and units. 2. White light shines through a diffraction grating with 7300 lines per cm. Make a table of diffraction angles for m = 1, 2,...
A doctor examines a mole with a 16.5 cm focal length magnifying glass held 12.0 cm...
A doctor examines a mole with a 16.5 cm focal length magnifying glass held 12.0 cm from the mole. a) Where is the image? (Enter the image distance in meters. Include the sign of the value in your answer.) b) What is its magnification? c) How big in millimeters is the image of a 5.05 mm diameter mole? d) What is the focal length (in cm) of a magnifying glass that produces a magnification of 3.65 when held 4.50 cm...
A doctor examines a mole with a 16.5 cm focal length magnifying glass held 14.0 cm...
A doctor examines a mole with a 16.5 cm focal length magnifying glass held 14.0 cm from the mole. (a) Where is the image? (Enter the image distance in meters. Include the sign of the value in your answer.) m (b) What is its magnification? (c) How big in millimeters is the image of a 4.60 mm diameter mole? mm
A symmetric, double-convex, thin lens made of glass with index of refraction 1.52 has a focal...
A symmetric, double-convex, thin lens made of glass with index of refraction 1.52 has a focal length in air of 40.0 cm. The lens is sealed into an opening in the left-hand end of a tank filled with water. At the right-hand end of the tank, opposite the lens, is a plane mirror 90.0 cm from the lens. The index of refraction of the water is 4/3. 1.Find the position of the image formed by the lens-water-mirror system of a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT