Question

In: Physics

1. Consider a convex lens with a focal length of 5.50 cm. An object is located...

1. Consider a convex lens with a focal length of 5.50 cm. An object is located at 13.50 cm. The object is 6.00 cm tall. Draw the ray diagram to scale. Determine the image distance, the height of the image, the magnification and the characteristices of the image. Pay attention to the sign conventions and units.

2. White light shines through a diffraction grating with 7300 lines per cm. Make a table of diffraction angles for m = 1, 2, 3, ... versus the wavelengths of red and blue light. Stop when the angle is undefined. Note there may be more starts than finishes. Based on your table: How many complete diffraction patterns are there? What is the wavelength of the light diffracted at 90 degrees for the highest order incomplete diffraction pattern? Remember that the wavelength range of visible light is from 400 nm (blue) to 700 nm (red).

Solutions

Expert Solution


Related Solutions

An object is located to the left of a convex lens whose focal length is f=34...
An object is located to the left of a convex lens whose focal length is f=34 cm. The magnification (m) produced by the lens is 4.0. Find an expression for magnification in terms of “f” and object distance (do). To increase the magnification to 5.0, calculate the distance through which the object should be moved. Also explain your result with free hand ray diagram. At what position of the object the magnification becomes infinity?
Consider a double convex lens with a focal length of 35 cm. If a marble is...
Consider a double convex lens with a focal length of 35 cm. If a marble is placed 85 cm from the lens, what is the image distance? Enter your answer in cm.
An object is 15.2 cm to the left of a lens with a focal length of...
An object is 15.2 cm to the left of a lens with a focal length of 10.2 cm. A second lens of focal length 11.8 cm is 39.27 cm to the right of the first lens. The height of the object of is 2.1 cm. What is the location of the final image with respect to the second lens? What is the height of the image?
a convex lens has a focal length f. if an object is placed at a distance...
a convex lens has a focal length f. if an object is placed at a distance beyond 2f from the lens on the principle axis, the image is located at a distance from the lens
1. An object is 30 cm in front of a converging lens with a focal length...
1. An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual? 2. An object is 6.0 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual?...
7. A convex lens has a focal length of f= 50cm. An object is placed 40cm...
7. A convex lens has a focal length of f= 50cm. An object is placed 40cm from the lens.Compute the location of the image. -200 cm 200 cm 22.2 cm -22.2 cm 8. An LED flashlight produces a beam with an intensity of I= 7.36W/m2 when it illuminates a circular piece of matte black painted steel having a radius of r = 40cm. If the steel has a mass of m= 5kg, what is the acceleration of the mirror due...
A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
An object is placed 12 cm in front of a diverging lens with a focal length...
An object is placed 12 cm in front of a diverging lens with a focal length of 7.9 cm. (a) Find the image distance and determine whether the image is real or virtual. (b) Find the magnification
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT