Question

In: Physics

The figure is an overhead view of a thin uniform rod of length 0.467 m and...

The figure is an overhead view of a thin uniform rod of length 0.467 m and mass M rotating horizontally at angular speed 15.7 rad/s about an axis through its center. A particle of mass M/3 initially attached to one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed vp is 3.32 m/s greater than the speed of the rod end just after ejection, what is the value of vp?

Solutions

Expert Solution

Hello!

Well I can't see the figure, I don't know why, but from what I read I think I have an answer

As I read, this problem give us the data of the final state at the rod, because when the rod and the particle were attached to each other, they had a different amount of momentum, by conservation of energy we can determine what was the initial angular velocity, which will guide us to the final velocity of the particle

Lets reduce all the terms to continue

The initial mass is the sum of the rod plus the particle

The inertia of the rod after the detachment is reduced to only the mass of the rod

and finally the kinetic energy of the particle

Once joined we have

Doing some repetitive algebraic arragement we got this

From this we obtain two values:

From which we use the first value, because if we use the second, that would mean that the rod was moving in the oposite direction which is not posible, so the velocity of the particle is


Related Solutions

The thin uniform rod in the figure has length 5.0 m and can pivot about a...
The thin uniform rod in the figure has length 5.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle θ = 50° above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position. Assume free-fall acceleration to be equal to 9.83 m/s2.
QUESTION 1: A thin uniform rod has a length of 0.400 m and is rotating in...
QUESTION 1: A thin uniform rod has a length of 0.400 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.35 rad/s and a moment of inertia about the axis of 2.90×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A uniform thin rod of length 0.812 m is hung from a horizontal nail passing through...
A uniform thin rod of length 0.812 m is hung from a horizontal nail passing through a small hole in the rod located 0.043 m from the rod\'s end. When the rod is set swinging about the nail at small amplitude, what is the period of oscillation?
A uniform thin rod of length 0.778 m is hung from a horizontal nail passing through...
A uniform thin rod of length 0.778 m is hung from a horizontal nail passing through a small hole in the rod located 0.057 m from the rod's end. When the rod is set swinging about the nail at small amplitude, what is the period of oscillation?
Two identical uniform solid spheres are attached by a solid uniform thin rod, as shown in the figure.
Two identical uniform solid spheres are attached by a solid uniform thin rod, as shown in the figure. The rod lies on a line connecting the centers of mass of the two spheres. The axes A, B, C, and D are in the plane of the page (which also contains the centers of mass of the spheres and the rod), while axes E and F (represented by black dots) are perpendicular to the page. (Figure 1).Rank the moments of inertia...
In the figure, a uniform plank, with a length L of 5.23 m and a weight...
In the figure, a uniform plank, with a length L of 5.23 m and a weight of 280 N, rests on the ground and against a frictionless roller at the top of a wall of height h = 1.59 m. The plank remains in equilibrium for any value of θ = 70.0° or more, but slips if θ < 70.0°. Find the coefficient of static friction between the plank and the ground.
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It...
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It is suddenly released and, at the same instant, it is struck a sharp blow vertically upwards at one end – the duration of the impulse is negligibly short. (a) Explain the meaning of the equation Fnet = Macom (com stands for center of mass). If we call z the vertical direction, write an equation for zCOM(t), draw a sketch of zCOM(t) vs t, and...
A thin uniform pole of length 30 m is pivoted at the bottom end. Calculate the...
A thin uniform pole of length 30 m is pivoted at the bottom end. Calculate the most probable point of rupture on the pole as the pole falls. STEP BY STEP PLEASE I am trying to understand this.
A thin rod (length = 1.85 m) is oriented vertically, with its bottom end attached to...
A thin rod (length = 1.85 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge. The mass of the rod may be ignored, compared to the mass of the object fixed to the top of the rod. The rod, starting from rest, tips over and rotates downward. (a) What is the angular speed of the rod just before it strikes the floor? (Hint: Consider using the principle of conservation of mechanical...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT