Question

In: Physics

In the figure, a uniform plank, with a length L of 5.23 m and a weight...

In the figure, a uniform plank, with a length L of 5.23 m and a weight of 280 N, rests on the ground and against a frictionless roller at the top of a wall of height h = 1.59 m. The plank remains in equilibrium for any value of θ = 70.0° or more, but slips if θ < 70.0°. Find the coefficient of static friction between the plank and the ground.

Solutions

Expert Solution


Related Solutions

A uniform plank of mass M and length L leans against a vertical wall. The initial...
A uniform plank of mass M and length L leans against a vertical wall. The initial angle it makes with the horizontal ground is 60º. It is let go from rest and slides down frictionlessly. The moment it leaves contact with the wall, what angle does it make with the ground? There is no friction anywhere.
In the figure, a 53.3 kg uniform square sign, of edge length L = 1.67 m,...
In the figure, a 53.3 kg uniform square sign, of edge length L = 1.67 m, is hung from a horizontal rod of length dh = 2.71 m and negligible mass. A cable is attached to the end of the rod and to a point on the wall at distance dv = 4.41 m above the point where the rod is hinged to the wall. (a) What is the tension in the cable? (b) What is the horizontal component of...
1. A rod of uniform density and weight W=120N has length L=1.00 m and is supported...
1. A rod of uniform density and weight W=120N has length L=1.00 m and is supported at two points, under the 10 cm point and under the 70 cm point. The support at 10 cm exerts a force NL on the rod and the support at 70 cm exerts a force NR on the rod, both forces being in the vertical direction. (a) Use the conditions of static equilibrium to find the values of NL and NR. (b) In order...
The figure is an overhead view of a thin uniform rod of length 0.467 m and...
The figure is an overhead view of a thin uniform rod of length 0.467 m and mass M rotating horizontally at angular speed 15.7 rad/s about an axis through its center. A particle of mass M/3 initially attached to one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed vp is 3.32 m/s greater than the speed of the rod end just after...
In the figure, a thin horizontal bar AB of negligible weight and length L = 3.2...
In the figure, a thin horizontal bar AB of negligible weight and length L = 3.2 m is hinged to a vertical wall at A and supported at B by a thin wire BC that makes an angle θ = 40° with the horizontal. A block of weight W = 140 N can be moved anywhere along the bar; its position is defined by the distance x = 2.07 m from the wall to its center of mass. Find (a)...
A plank of length l = 2m is hinged at one end to a wall. The...
A plank of length l = 2m is hinged at one end to a wall. The other end is being (temporarily) supported by a worker who is holding it up with his hand, keeping the plank horizontal. The plank has a mass of 20kg, and there is also a toolbox of mass 5kg sitting on it, 50cm away from the worker (1.5 m away from the wall). (a) Draw a free body diagram and an extended free-body diagram for the...
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg...
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg leans against a smooth vertical wall, while its bottom legs rest on a rough horizontal floor. The coefficient of static friction between floor and ladder is μ = 0.38. The ladder makes an angle θ = 53° with respect to the floor. A painter of mass 8M stands on the ladder a distance d from its base. a. Find the magnitude of the normal...
The thin uniform rod in the figure has length 5.0 m and can pivot about a...
The thin uniform rod in the figure has length 5.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle θ = 50° above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position. Assume free-fall acceleration to be equal to 9.83 m/s2.
A uniform stick, mass m and length l, is placed in a horizontal plane by hanging...
A uniform stick, mass m and length l, is placed in a horizontal plane by hanging it from a massless string attached to the center. A ball of mass M moving with speed V in the plane of the stick. The ball strikes the stick at a distance d from the center. the collision is elastic. Find the resulting translational and rotational speeds of the stick and the resulting speed of the ball. show that the relative speed of the...
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It...
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It is suddenly released and, at the same instant, it is struck a sharp blow vertically upwards at one end – the duration of the impulse is negligibly short. (a) Explain the meaning of the equation Fnet = Macom (com stands for center of mass). If we call z the vertical direction, write an equation for zCOM(t), draw a sketch of zCOM(t) vs t, and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT