In: Statistics and Probability
A student wants to investigate the effects of real vs. substitute eggs on his favorite brownie recipe. Ten of his friends have come up with a consensus for the ranking of each of 8 batches on a scale from 1 to 10, and that has been recorded. Four of the batches were made with real eggs, four with substitute eggs. The judges tasted the brownies in a random order. The mean score for the real eggs was 6.76 with a standard deviation of 0.653. The mean score for the substitute eggs was 4.73 with a standard deviation of 0.393.
RealSubstitute45678EggsScore
Two vertical boxplots are shown side-by-side in a graph with horizontal axis labeled "Eggs" with categories "Real" and "Substitute" and vertical axis labeled "Score" from less than 4 to 8 plus in intervals of 1. The five horizontal segments of each boxplot have vertical coordinates as follows, listed here from bottom to top: "Real", minimum 6, first quartile 6.2, median 6.8, third quartile 7.4, maximum 7.6; "Substitute", minimum 4.1, first quartile 4.3, median 4.8, third quartile 5, maximum 5.1. All values are approximate.
| 
 Source  | 
 DF  | 
 Sum of Squares  | 
 Mean Square  | 
 F-ratio  | 
 P-value  | 
|---|---|---|---|---|---|
| 
 Eggs  | 
 1  | 
 8.429470  | 
 8.42947  | 
 28.3782  | 
 0.0018  | 
| 
 Error  | 
 6  | 
 1.782255  | 
 0.29704  | 
||
| 
 Total  | 
 7  | 
 10.211725  | 
b) What can be concluded from the ANOVA table?
Identify the test statistic.
F = _ ? (Type an integer or a decimal.)
Identify the P-value.
P-value = _ ? (Type an integer or a decimal.)
Draw a conclusion for the test. Use a level of significance of α=0.05.
(Reject/ Fail to reject) the null hypothesis. The real eggs (have/do not have) a significantly different mean score.
d) Perform a two-sample pooled t-test of the difference. What is the P-value? Compare the square of the t-statistic to the F-ratio.
P-value = _ ? (Round to three decimal places as needed.)
from anova:
F =28.3782
p value = 0.0018
p value < 0.05 , reject Ho
The real eggs (have) a significantly different mean score.
.........
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   sample 1  
           
   
mean of sample 1,    x̅1=   6.76  
           
   
standard deviation of sample 1,   s1 =   
0.65          
       
size of sample 1,    n1=   4  
           
   
          
           
   
Sample #2   ---->   sample 2  
           
   
mean of sample 2,    x̅2=   4.73  
           
   
standard deviation of sample 2,   s2 =   
0.39          
       
size of sample 2,    n2=   4  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
6.7600   -   4.7   =  
2.03  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    0.5389  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.3811          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
2.0300   -   0   ) /   
0.38   =   5.327
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
6          
       
  
p-value =        0.002 (excel
function: =T.DIST.2T(t stat,df) )      
  
(t stat)^2 = (5.327)^2 =28.378
F stat = 28.378
.......................
Please revert back in case of any doubt.
Please upvote. Thanks in advance.