Question

In: Biology

Proteins are ______________ built from amino acids, which each have an amino group

Proteins are ______________ built from amino acids, which each have an amino group and a _____________ group attached to the central _______________. There are twenty possible _______________ that differ in structure and are generally referred to as “R.” In solutions of neutral pH, amino acids are _______________, carrying both a positive and negative charge. When a protein is made, amino acids are linked together through _______________, which are formed by condensation reactions between the carboxyl end of the last amino acid and the ___________________ end of the next amino acid to be added to the growing chain.

a: aminob: ionizedc: polypeptides
d: alpha-carbone: lengthf: protein
g: carbonh: noncovalenti: R group
j: carboxylk: peptide bondsl: side chains

m: hydroxide

Solutions

Expert Solution

. Proteins are polypertides built from amino acids, which each have an amino group and a carboxyl group attached to the central alpha-carbon. There are twenty possible R group that differ in structure and are generally referred to as “R.” In solutions of neutral pH, amino acids are ionized, carrying both a positive and negative charge. When a protein is made, amino acids are linked together through peptide bonds, which are formed by condensation reactions between the carboxyl end of the last amino acid and the amino end of the next amino acid to be added to the growing chain.


Related Solutions

The 21st and 22nd amino acids found in proteins are the rare amino acids ______________ and...
The 21st and 22nd amino acids found in proteins are the rare amino acids ______________ and ______________. ________________ are nonviral genetic elements that have reverse transcriptase activity. An example of retrotransposons in the human genome is the ____ family of sequences.
Proteins are chains of amino acids. There are twenty different types of naturally occurring amino acids,...
Proteins are chains of amino acids. There are twenty different types of naturally occurring amino acids, and all organisms must have all twenty of them in order to survive. In this project we will be discussing the amino acid leucine. What are the two possible methods that a cell may employ to be certain that it has each of the 20 amino acids? RNA is partly made of the base uracil. What are the two possible methods that a cell...
Common proteins are polymers of 20 different amino acids. How many amino acids are necessary for...
Common proteins are polymers of 20 different amino acids. How many amino acids are necessary for a protein polymer to have at least as many possible different sequences as there are atoms in the Universe? (There are about 2 × 1056 moles of atoms in the Universe.) *Note - The answer is a mathmatical answer. I need an explanation of the math behind this problem.
Two of the facts which differentiate lipids and carbohydrates from amino acids are that, amino acids...
Two of the facts which differentiate lipids and carbohydrates from amino acids are that, amino acids can neither be stored nor excreted. true false A baby got sick a few weeks after birth and test results show that the baby had higher than normal levels of the amino acid phenylalanine. Which of the following best describes the baby's probable diagnosis? The baby has maple syrup disease The baby has PKU More lab test are needed to confirm the cause malady...
Which of the following amino acids exists predominantly as a zwitterion? The terminal amino group, terminal...
Which of the following amino acids exists predominantly as a zwitterion? The terminal amino group, terminal carboxyl group, and side chain pKa values can be found in Table 3.1 (Any pKa table). A. leucine at pH = 10 B. histidine at pH = 5 C. glutamic acid at pH = 3.5 D. tyrosine at pH = 11.5 E. lysine at pH = 7
All amino acids have two ionizable functional groups: an α-amino group (average pKa of 9.4) and...
All amino acids have two ionizable functional groups: an α-amino group (average pKa of 9.4) and an α-carboxylic acid group (average pKa of 2.2). Arginine also has an ionizable side chain (R group) with a pKa of ~12.5. One of the possible ionization states of arginine is shown below. At what pH would the above structure be the predominant ionization state? Note: Consider the ionization state of all three of the functional groups. The protonated form of the R group...
The structure and properties of amino acids determine the structure and properties of proteins and, therefore,...
The structure and properties of amino acids determine the structure and properties of proteins and, therefore, their function. How do amino acids and peptide properties dictate protein structure and function? In your explanation, please include the key terms hydrophobicity, hydrogen bonding, electrostatic interactions, acid-base property.
The structure and properties of amino acids determine the structure and properties of proteins and, therefore,...
The structure and properties of amino acids determine the structure and properties of proteins and, therefore, their function. How do amino acids and peptide properties dictate protein structure and function? In your explanation, please include at least one representation and the key terms hydrophobicity, hydrogen bonding, electrostatic interactions, acid-base property
Amino acids are the building blocks of proteins, and can act as both a Brønsted acid...
Amino acids are the building blocks of proteins, and can act as both a Brønsted acid and a Brønsted base through intramolecular proton transfer (see Chapter 16, pg. 709 of the textbook). The simplest amino acid known is glycine, NH2CH2CO2H (Ka = 4.5 ×10–3 and Kb = 6.0 ×10–5 ), and it can exist in three forms in equilibrium with one another: H2N––CH2––COOH +H3N––CH2––COOH +H3N––CH2––COO– H2N––CH2––COO– Glycine cation zwitterion anion (a) Write the equilibria corresponding to Ka and Kb of...
protection factors provide information on the stability of individual amino acids in proteins. why is the...
protection factors provide information on the stability of individual amino acids in proteins. why is the determination of protection factors not possible using HDX-MS?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT