Question

In: Chemistry

Water in an open metal drum is to be heated from 27 °C to 80 °C...

Water in an open metal drum is to be heated from 27 °C to 80 °C by adding superheated steam slowly enough that all the superheated steam condenses. The drum initially contains 250 kg of water, and superheated steam is supplied at 5.0 bar and 375 °C via a 7.5 cm ID stainless steel pipe.

a.) How many kilograms of superheated steam should be added so that the final temperature of the water in the tank is exactly 80 °C?

b.) What is the velocity (m/Δt) of the superheated steam entering the open metal drum?

(Neglect all heat losses from the water in this calculation.)

Solutions

Expert Solution

Given Data:

Mass of water to be heated = 250 Kg

Temperature of cold water in = 27 deg C

Temperature of cold water out = 80 deg C

Superheated steam operating Pressure = 5

Tempearture of suoerheated steam = 375 deg C

Solution:

As the superheated steam is used to heat the water, it looses its temperatre in two steps:

1) superheated stem to condensed form

2) condensed vapour

The heat balance can be obtained as below:

heat required by water to raise temperature form 27 deg c to 80 deg c = heat realesed when superheated stem comes to its condensed form + heat released by the liquid.

thus,

m*cp*delta T = m*(steam)*cp  delta T+m(steam)* latent heat of condensation

250*4184*(80-27)= m(2.3289*(375-151.85) + (2095.9))

a) m(steam) = 2.119 Kg

Here, at 5 bar pressure, the superheated steam has been considered to have speccific heat = 2.3289

Boiling point = 151.85

Thus 2.119 Kg superheted steam should be added to reach final temperature of 80 deg C.


Related Solutions

A 91.70 g sample of metal was heated in a boiling water bath at 99.4 °C....
A 91.70 g sample of metal was heated in a boiling water bath at 99.4 °C. The hot metal was then placed in a calorimeter, with heat capacity 39 J/K containing 45.0 g of water. Analysis of the thermogram showed the initial temperature to be 21.1°C, the final temperature to be 42.3°C. 4.91 g of LiCl was dissolved in 50.0 mL of water in the same calorimeter as in problem (above) 1. Analysis of the thermogram showed the initial temperature...
A 91.70 g sample of metal was heated in a boiling water bath at 99.4 °C....
A 91.70 g sample of metal was heated in a boiling water bath at 99.4 °C. The hot metal was then placed in a calorimeter, with heat capacity 39 J/K containing 45.0 g of water. Analysis of the thermogram showed the initial temperature to be 21.1°C, the final temperature to be 42.3°C. Calculate Delta T water Calculate Delta T metal Calculate . CsPmetal Calculate M (there's a - above the M.. don't know what that means) metal What is the...
27. 3.5 kg of water (c=4189 J/(kgxK)) is heated from T1= 14 degrees to T2= 21.5...
27. 3.5 kg of water (c=4189 J/(kgxK)) is heated from T1= 14 degrees to T2= 21.5 degrees. Input an expression for the heat transferred to the water, Q. Calculate the value of heat transferred to the water Q in joules, using the expression from part (a). To the heated water 0.5 kg of water at T3= 20 degrees is added. What is the final temperature of the water, in kelvin
The water in a 40-L tank is to be heated from 15°C to 45°C by a...
The water in a 40-L tank is to be heated from 15°C to 45°C by a 25-cm-diameter spherical heater whose surface temperature is maintained at 85°C. Determine how long the heater should be kept on. Given: The properties of air at 1 atm and the film temperature of 57.5°C. Fluid temperature = Average temperature for water (15+45)/2=30°C k = 0.6515 W/m.°C, v = 0.493 x 10-6 m2/s, Pr = 3.12, and ? = 0.501 x 10-3 K-1 The properties of...
A 45.0-gram sample of copper metal was heated from 20.0 C to 100.0 C. Calculate the...
A 45.0-gram sample of copper metal was heated from 20.0 C to 100.0 C. Calculate the heat absorbed (in kJ) by the metal. If this 45.0-gram sample of copper is now placed in 150 grams of water at 20.0 C in a calorimeter, what will be the temperature of the water at thermal equilibrium? What gains heat? What loses heat? How much heat is exchanged (in kJ)? Specific heat of Copper .385 and a density of 8.92
21. If a 2.50 mol sample of water is heated from -50 °C to 75 °C...
21. If a 2.50 mol sample of water is heated from -50 °C to 75 °C at a constant pressure of 1 atm, what is the change in enthalpy?
Water is to be heated from 12◦C to 70◦C as it flows through a 2 centimeter...
Water is to be heated from 12◦C to 70◦C as it flows through a 2 centimeter internal diameter, 7 meter long tube. The tube is equipped with an electric resistance heater, which provides uniform heating throughout the surface of the tube. The outer surface of the heater is well insulated, so that in steady operation all of the heat generated in the heater is transferred to the water in the tube. If the system is to provide hot water at...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by...
Water at a flow rate of 20,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counter flow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: Rf i...
Calculate ΔS if 2.10 mol of liquid water is heated from 0.00 ∘C to 13.5 ∘C...
Calculate ΔS if 2.10 mol of liquid water is heated from 0.00 ∘C to 13.5 ∘C under constant pressure if CP,m=75.3J⋅K−1⋅mol−1. The answer the the problem above is 7.62 J/K The melting point of water at the pressure of interest is 0.00 ∘C, and the enthalpy of fusion is 6.010 kJ⋅mol−1. The boiling point is 100. ∘C, and the enthalpy of vaporization is 40.65 kJ⋅mol−1. Calculate ΔS for the transformation of the same amount of water H2O(s,0.00∘C) →H2O(g,100.∘C) Can you...
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated...
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. If both streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. Include a heat loss rate of 200 kW and a net mass flow rate of the combined streams of 4 lbm/s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT