Question

In: Statistics and Probability

Data T2005    AZ100 3.06        2.91 3.04        3.31 3.13        2.82 3.01        3.01 2.95 &n

Data

T2005    AZ100

3.06        2.91

3.04        3.31

3.13        2.82

3.01        3.01

2.95        2.94

3.02        3.17

3.02        3.25

3.12        3.39

3.00        3.22

3.04        2.97

3.03        2.93

3.05        2.97

3.01        3.05

2.73        2.95

3.12        2.92

3.04        2.71

3.10        2.77

3.02        2.73

2.92        3.18

3.01        2.95

3.15        2.86

2.69        3.16

3.04        3.06

3.01        3.25

2.95        2.82

3.14        3.22

3.31        2.93

3.01        3.24

2.93        2.77

3.00        2.94

3.04        3.31

To determine the precision of the two drills, you examine the variance in the sample data for the two samples. Conduct a test of the hypothesis that the T2005 and the AZ100 are equally precise (that they have equal variances). What is the value of your test statistic?

3.022

2.854

0.350

3.023

Construct a 99% confidence interval around the mean difference between the T2005 and AZ100 drills. What is the lower limit of the confidence interval assuming an unknown population standard deviations?

Unknown

-0.080

-0.107

-.067

Conduct a hypothesis test to determine if the AZ100 drill holes are statistically significantly different from the hypothesized value of 3 centimeters. Use an alpha of .05, and assume the population standard deviation is unknown. What is the value of your test statistic?

1.100

0.020

0.670

0.034

What is the population standard deviation for 3 centimeter holes drilled by the AZ100 drill?

0.002

0.113

Unknown

0.190

Solutions

Expert Solution

1)

Null and alternative hypothesis:
Hₒ : σ₁² = σ₂²
H₁ : σ₁² ≠ σ₂²

   Sample :     AZ100
Sample Standard deviation,    s₁ =    0.112626512
Sample size,    n₁ =    31


   Sample : T2005
Sample Standard deviation,    s₂ =    0.190266367
Sample size,    n₂ =    31

Test statistic:  
F = s₁² / s₂² = 0.1903² / 0.11263² =    2.854

================

2)

t-critical value =    t α/2 =    2.682   (excel formula =t.inv(α/2,df)      
                  
                  
                  
std error , SE =    √(s1²/n1+s2²/n2) =    0.040          
margin of error, E = t*SE =    2.682   *   0.040   =   0.106513
                  
difference of means = x̅1-x̅2 =    3.0223   -   3.023   =   -0.0006
confidence interval is                   
Interval Lower Limit = (x̅1-x̅2) - E =    -0.0006   -   0.107   =   -0.107
=====================

Ho :   µ =   3  
Ha :   µ ╪   3   (Two tail test)
          
Level of Significance ,    α =    0.050  
sample std dev ,    s =    0.1903  
Sample Size ,   n =    31  
Sample Mean,    x̅ =   3.0229  
          
degree of freedom=   DF=n-1=   30  
          
Standard Error , SE = s/√n =   0.1903/√31=   0.0342  
t-test statistic= (x̅ - µ )/SE =    (3.0229-3)/0.0342=   0.670  
======================

population standard deviation for 3 centimeter holes drilled by the AZ100 drill = unknown


Related Solutions

T2005 AZ100 3.06 2.91 3.04 3.31 3.13 2.82 3.01 3.01 2.95 2.94 3.02 3.17 3.02 3.25...
T2005 AZ100 3.06 2.91 3.04 3.31 3.13 2.82 3.01 3.01 2.95 2.94 3.02 3.17 3.02 3.25 3.12 3.39 3.00 3.22 3.04 2.97 3.03 2.93 3.05 2.97 3.01 3.05 2.73 2.95 3.12 2.92 3.04 2.71 3.10 2.77 3.02 2.73 2.92 3.18 3.01 2.95 3.15 2.86 2.69 3.16 3.04 3.06 3.01 3.25 2.95 2.82 3.14 3.22 3.31 2.93 3.01 3.24 2.93 2.77 3.00 2.94 3.04 3.31 Conduct a hypothesis test to determine if the AZ100 drill holes are statistically significantly different from...
sample 1; sample mean=2.91 sample sd=1.59 n=59 sample 2 sample mean=2.91 sample sd=2.48 n=60 conduct hypothesis...
sample 1; sample mean=2.91 sample sd=1.59 n=59 sample 2 sample mean=2.91 sample sd=2.48 n=60 conduct hypothesis test w/1% signifance level and a DF of 100 1) calculate the appropriate test statistic and 2) find the critical value
A researcher estimates the following regression using 1000 observations: W=-3.13+1.47*EDU                            &n
A researcher estimates the following regression using 1000 observations: W=-3.13+1.47*EDU                                                                                                                          (0.93)     (0.07) Where W is wage, EDU is years of education and the numbers in parentheses are standard errors of the coefficients. Calculate a 95% confidence interval for the coefficient on EDU. A high school graduate is contemplating whether to obtain a 4-year college degree. How much is his/her wage expected to rise? A high school counselor tells a student that college graduates earn a wage $12...
Data                                         1  &n
Data                                         1                              2                              3                              4              1                              2 Budgeted unit sales                 50,000                     65,000                     110,000                   65,000     80,000                     95,000 Selling price per unit                                                              $7 per unit                                                                                                                 Year 2                                                     Year 3                                                 1                              2                              3                              4              1                              2 Budget Unit Sales                   50,000                     65,000                     110,000                   65,000     80,000                     95,000 Selling price per unit 7$ per unit Accounts receivable, beginning balance 65,000 Sales collected in the quarter sales are made 75% Sales...
Consider the following data on an​ asset:                                    &n
Consider the following data on an​ asset:                                                                                                                                                                                                                                                                                                                                                                                                                                                          Cost of the​ asset, I ​$202 ,000 Useful​ life, N 5 years Salvage​ value, S ​$70,000 Compute the annual depreciation allowances and the resulting book values. Use the​ double-declining-balance method. Fill in the table below. ​(Round to the nearest​ dollar.) n Dn Bn 1 ​$_____ ​$______ 2 ​$_____ ​$_____
Consider the following data on an​ asset:                                    &n
Consider the following data on an​ asset:                                                                                                                                                                                                                                                                                                                           Cost of the​ asset, I ​$214,000 Useful​ life, N 5 years Salvage​ value, S ​$62,000 Compute the annual depreciation allowances and the resulting book values. ​(a) Use the​ straight-line depreciation method. Fill in the table below. ​(Round to the nearest​ dollar.) n Dn Bn 1 ​$__________ ​$___________ 2 ​$__________ ​$___________ 3 ​$__________ ​$___________ 4 ​$__________ ​$___________ 5 ​$__________ ​$___________ ​(b) Use the​ double-declining-balance method. Fill in the table below. ​(Round to...
A sample of size n = 10 n=10 is drawn from a population. The data is...
A sample of size n = 10 n=10 is drawn from a population. The data is shown below. 98.8 110.5 117.2 100.2 135.2 135.2 135.2 115.8 125.8 106.6 What is the range of this data set? range = What is the standard deviation of this data set? (Remember, it is a sample.) Please report the answer with appropriate rounding, reporting 2 more decimal places than the original data. Please, please, please do not calculate the value by hand. stdev =
The data file contains displacement (in mm)-load (in N) data for a mechanical test that was...
The data file contains displacement (in mm)-load (in N) data for a mechanical test that was conducted on an unknown metal. The initial length and diameter of the specimen are also given. a. (5 pts.) Using the data and a computer program (such as Excel), create an engineering stress-engineering strain graph with proper labels. The stress axis should be in the units of MPa. You do not need to show your spreadsheet or software code used to make the graph....
A graph of the frequency distribution for interval data is called a(n)
A graph of the frequency distribution for interval data is called a(n)
Given the following data for 2017: Administrative costs                                 &n
Given the following data for 2017: Administrative costs                                                   $35,000 Current liabilities                                                          18,000 Building depreciation (80% for plant)                       25,000 Indirect materials and supplies                                       4,000 Sales commission expenses                                         12,000 Accounts receivable                                                     15,000 Direct materials inventory, Jan 1, 2017                        15,000 Direct labor                                                                 32,000 Direct materials inventory, Dec 31, 2017                    16,000 Finished goods inventory, Jan 1, 2017                           8,000 Finished goods inventory, Dec 31, 2017                        7,000 Materials purchases                                                    20,000 Work in process inventory, Dec 31, 2017                    10,000 Supervisory and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT