Question

In: Physics

You are pushing a box (m = 4 kg) horizontally with a constant force F =...

You are pushing a box (m = 4 kg) horizontally with a constant force F = 30 N. After pushing it for a distance d = 5 m, the box reaches a hill inclined at θ = 25°. You stop pushing the box as soon as it reaches the hill. The coefficient of kinetic friction between the box and the road is µk = 0.4 and the hill is frictionless. How far up the hill is the box going to go?

Solutions

Expert Solution


Related Solutions

You push a 65.0 kg box 20.0 m with a force of 85.0 N at an...
You push a 65.0 kg box 20.0 m with a force of 85.0 N at an angle of 35.0° on a rough surface. The box is accelerated from rest to 6.00 m/s. (32 pts) a.​List all the forces acting on the crate and state whether they do positive, negative or zero work on the crate. (8 pts.) b.​How much work do you do on the crate? (7 pts.) c.​What is the change in kinetic energy of the crate? (7 pts.)...
If you have a force pushing down on a 30 square meter surface at the constant...
If you have a force pushing down on a 30 square meter surface at the constant force of 5 N. What is the pressure? If you have a sealed piston with an initial volume of 1.5 L and an initial pressure of 2.5 atm, if the piston expands to 3.5 L. What is the new pressure? Assume that moles and temperature stay constant. If you have sealed piston with a temperature of 298 K and a volume of 5.0 L,...
1. A student pulls horizontally on a 12 kg box, which then moves horizontally with an...
1. A student pulls horizontally on a 12 kg box, which then moves horizontally with an acceleration of 0.2 m/s2. If the student uses a force of 15 N, what is the coefficient of kinetic friction of the floor? 2. A 30 kg block slides down a 20° ramp with an acceleration of 1.2 m/s2. What is the coefficient of kinetic friction between the block and the ramp? 3. For a given velocity of projection in a projectile motion, the...
A mass m = 3.27 kg is attached to a spring of force constant k =...
A mass m = 3.27 kg is attached to a spring of force constant k = 60.9 N/m and set into oscillation on a horizontal frictionless surface by stretching it an amount A = 0.17 m from its equilibrium position and then releasing it. The figure below shows the oscillating mass and the particle on the associated reference circle at some time after its release. The reference circle has a radius A, and the particle traveling on the reference circle...
1) A mover pushes a 5.87 kg box with a 48.1 N constant horizontal force up...
1) A mover pushes a 5.87 kg box with a 48.1 N constant horizontal force up a 14.9° ramp that has a height of 2.56 m. If the ramp is assumed to be frictionless, find the speed of the box as it reaches the top of the ramp using work and energy. 2) A 1100 kg car is traveling 35.5 m/s when it comes up to the bottom of a 14.0° hill. If the car coasts up the hill and...
The box moves at a constant speed. If the mass of the box is 6.4 kg,...
The box moves at a constant speed. If the mass of the box is 6.4 kg, it is pushed 3.6 m vertically upward, the coefficient of friction is 0.35, and the angle θ is 30.0°, determine the following. (a) the work done (in J) on the box by F (b) the work done (in J) on the box by the force of gravity J (c) the work done (in J) on the box by the normal force J (d) the...
1. A 25 kg box is lifted upward at a constant rate of 2 m/s. If...
1. A 25 kg box is lifted upward at a constant rate of 2 m/s. If the box is lifted a height of 4 m, how much work is done on the box? 2. A 120 kg box is attached to a string and pulled along a rough, flat surface with a coefficient of friction 0.22. If the string pulls with a force of 500 N and is attached at an angle of 30 degrees above the horizontal, and the...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2 ). (A) Calculate the fundamental frequency (expressed in units of cm-1 ) and the zero point energy (in energy units, J). (B) Earlier in the term we discussed the relationship between the energy and the position and momentum uncertainties. For the harmonic oscillator case, it would be E ≥ ((Δp) 2 / 2µ) + (1 / 2) µω2 (Δx) 2 (Equation 1) The ground...
A 0.59 kg object connected to a light spring with a force constant of 19.2 N/m...
A 0.59 kg object connected to a light spring with a force constant of 19.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the...
A 2.20 kg frictionless block is attached to an ideal spring with force constant 314 n/m...
A 2.20 kg frictionless block is attached to an ideal spring with force constant 314 n/m . Initially the block has velocity -3.70 m/s and displacement 0.270 m.Find the amplitude of the motion in mFind the maximum acceleration of the block in m/s^2Find the maximum force the spring exerts on the block in n
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT