Question

In: Physics

A heat engine receives an amount of energy Qh= 790 kJ by heat transfer from a...

A heat engine receives an amount of energy Qh= 790 kJ by heat transfer from a high temperature thermal reservoir at Th=950 K. Energy is rejected by heat transfer to a lower temperature thermal reservoir at T1=590 K. If waste heat in the amount of Q1=160 kJ is rejected to the low temperature thermal reservoir during each cycle.

a) Solve for the maximum theoretical efficiency that an engine in this situation could operate with. ANSWER: 0.379

b) Solve for actual efficiency that the engine is operating with.

c) Which of the following best describes the manner in which the cycle is operating...

-Reversibly or Impossibly?

Solutions

Expert Solution

Temperature of the hot reservoir = Th = 950 K

Temperature of the cold reservoir = Tc = 590 K

Maximum theoretical efficiency of the engine = max

Maximum theoretical efficiency of a heat engine is equal to the carnot efficiency.

max = 0.379

Energy received by the heat engine from the hot reservoir = Qh = 790 kJ

Energy the heat engine rejects to the cold reservoir = Qc = 160 kJ

Work done by the engine = W

Qh = Qc + W

790 = 160 + W

W = 630 kJ

Actual efficiency of the engine =

= 0.797

The actual efficiency of the engine is greater than the maximum theoretical efficiency.

This is not possible therefore the given engine is impossible.

a) Maximum theoretical efficiency of the engine = 0.379

b) Actual efficiency of the engine = 0.797

c) The engine is operating impossibly


Related Solutions

A system that operates in a reversible cycle receives energy by heat transfer from a 15.7oC...
A system that operates in a reversible cycle receives energy by heat transfer from a 15.7oC reservoir at a rate of 26.9 kW, and delivers energy by heat transfer to a 49.8oC reservoir. Determine the rate of heat transfer (kW) to the high temperature reservoir.
5. A power cycle receives energy QH by heat transfer from a high temperature energy source...
5. A power cycle receives energy QH by heat transfer from a high temperature energy source at TH = 2000 K and rejects energy QL by heat transfer to a low temperature energy sink at TL = 400 K. For each of the following cases determine whether the cycle operate reversibly, irreversibly, or is impossible. (a) QH = 1200 kJ, Wcycle = 1020 kJ. (b) QH = 1200 kJ, QL = 240 kJ. (c) Wcycle = 1400 kJ, QL =...
A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K,...
A heat engine operates by extracting 2,000 KJ of heat from a source at 1500 K, and dumping 800 of waste heat into a sink at 300 K. a) Does this engine violate any known laws of thermodynamics? b) How much work does this engine produce? c) What are the first and second law efficiencies?
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the...
A Carnot heat engine receives heat at 850 K and rejects the waste heat to the environment at 298 K. The entire work output of the heat engine is used to drive a Carnot refrigerator that removes heat from the cooled space at -17⁰C at a rate of 450 kJ/min and rejects it to the same environment at 298 K. Determine; (a) the rate of heat supplied to the heat engine and (b) the total rate of heat rejection to...
Professor Modyn wants to power his refrigerator with a heat engine. A Carnot heat engine receives...
Professor Modyn wants to power his refrigerator with a heat engine. A Carnot heat engine receives heat from a reservoir at 493.0°C at a rate of 767 kJ/min and rejects heat to the ambient air at 29.1°C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at -3.23°C and transfers it to the same ambient air at 29.1°C. Note: The IUPAC sign conversion for work is used. Work...
A system releases 65 kJ of heat and receives 82 kJ of work. What is ∆E?...
A system releases 65 kJ of heat and receives 82 kJ of work. What is ∆E? Is the process endothermic or exothermic?
if you transfer heat energy to a perfectly insulated cup of some liquid (no heat energy...
if you transfer heat energy to a perfectly insulated cup of some liquid (no heat energy can be transferred in or out through the walls) what determines how much the temperature changes? Does it depend on how much heat energy you transfer, how much liquid there is in the cup, what the liquid is, or what the initial temerpature of the liquid is? Which of these factors do you think make a differnce in how much the temperture rises?
Heat Transfer Mechanisms What are the four mechanisms of heat/energy transfer? Give an example for each....
Heat Transfer Mechanisms What are the four mechanisms of heat/energy transfer? Give an example for each. What happens to energy when water evaporates – gained or lost? What happens to energy when water condenses –gained or lost? Explain how thermohaline circulation of ocean water affects global temperature distribution. Must be 350 words long. give a good explanation and examples of each. this is physical geography. they have to be long explanation.
What is the amount of energy emitted in KJ from a photon given off by a...
What is the amount of energy emitted in KJ from a photon given off by a sulfur atom with a wavelength of 702.3 nm?
How much energy (in kJ/mol) is absorbed or released for the transfer of electrons from α-ketoglutarate...
How much energy (in kJ/mol) is absorbed or released for the transfer of electrons from α-ketoglutarate to NAD+?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT