In: Statistics and Probability
What is the difference between the bootstrap method and the jackknife method? (Bootstrap & Jackknife are in R Studio/Markdown)
Bootstrapping – This approach is based on the fact that all we know about the underlying population is what we derived in our samples. Becoming the most widely used resampling method, it estimates the sampling distribution of an estimator by sampling with replacement from the original estimate, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter. Like all Monte Carlo based methods, this approach can be used to define confidence Intervals and in hypothesis testing. This method is beneficial to side step problems with non-normality or if the distribution parameters are unknown. This method can be used to calculate an appropriate sample size for experimental design.
Jackknife – This method is used in statistical inference to estimate the bias and standard error in a statistic, when a random sample of observations is used to calculate it. This method provides a systematic method of resampling with a mild amount of calculations. It offers “improved” estimate of the sample parameter to create less sampling bias. The basic idea behind the jackknife estimator lies in systematically re-computing the statistic estimate leaving out one observation at a time from the sample set. From this new “improved" sample statistic can be used to estimate the bias can be variance of the statistic.