In: Advanced Math
A=[ 7 8 -2 -6 7 4 1 ; 2 4 -4 -13 9 9 -12 ; 6 6 0 -9 8 9 -4 ; 1 8 -14 -22 5 8 -1 ; 4 9 -10 -14 7 4 -1]
B=[ 19 4 4 14 -3 -7 -5 ; 21 -6 -5 10 14 -2 4 ; 22 -4 5 13 5 -6 4 ; 41 20 0 26 11 -1 -27 ; 29 14 -2 20 3 -4 -19]
Remark: You may only use rref , or commands that are covered in our MATLAB guides, and no other special MATLAB functions for this problem.
(a) (3 points) Find a basis for Col(A) and determine its dimension.
(b) (5 points) Find a basis for Nul(A) and determine its dimension.
(c) (3 points) Find a basis for Row(A) and determine its dimension.
(d) (5 points) Find a basis for the left nullspace of A and determine its dimension.
(e) (2 points) Find a basis for Col(B) and determine its dimension.
(f) (6 points) Determine whether Col(A) = Col(B), i.e. determine whether the two given subspaces of R 5 are the same or not. If not, find a vector v
that belongs in one of the subspaces and not the other.
(g) (6 points) Determine whether Nul(A) = Nul(B). If not, find a vector v that belongs in one of the subspaces and not the other.
A_r=[1 0 2 0 0 2 1
0 1 -2 0 0 -2 1
0 0 0 1 0 -1 0
0 0 0 0 1 0 -2
0 0 0 0 0 0 0] ----------------->rref of A
To obtain basis for column space we use pivot columns from the Matrix A
so column_basis(A)=
[{7 { 8 {7 { 8
2 4 2 4
6 6 6 6
1 8 1 8
4 } 9 } 4 } 9}]
Dimension is Rank4
b)A_r=[1 0 2 0 0 2 1
0 1 -2 0 0 -2 1
0 0 0 1 0 -1 0
0 0 0 0 1 0 -2
0 0 0 0 0 0 0] ----------------->rref of A
A_r=[1 0 2 0 0 2 1 0
0 1 -2 0 0 -2 1 0
0 0 0 1 0 -1 0 0
0 0 0 0 1 0 -2 0
0 0 0 0 0 0 0 0]
Again back to equivalent system:
x1+0+2x3+0+0+2x6+x7=0
0+x2-2x3+0+0-2x6+x7=0
x3=x3%add free varaiabe in the equation
0+0+0+x4+0-x6+0=0
0+0+0+0+x5+0-2x7=0
x7=x7 %free variable
on simplification:
x1=-2x3-2x6-x7
x2=2x3+2x6-x7
x3=x3
x4=x6
x5=2x7
x6=x6
x7=x7
Arranging the terms we get
[x1 [-2x3 [-2x6 [-x7
x2 2x3 2x6 x7
x3 x3 0 0
x4 = 0 x6 0
x5 0 0 2x7
x6 0 x6 0
x7] 0] 0] x7]
basis of null sapce
[2 -2 -1
2 2 -1
1 0 0
0 1 0
0 0 2
0 1 0
0 0 1]
dimension=Rank3
c)Basis of Row
c)A_r=[1 0 2 0 0 2 1
0 1 -2 0 0 -2 1
0 0 0 1 0 -1 0
0 0 0 0 1 0 -2
0 0 0 0 0 0 0] ----------------->rref of A
Non zero rows in RREF is row basis
Basis of Row(A)={[1 0 2 0 0 2 1]
[ 0 1 -2 0 0 -2 1]
[ 0 0 0 1 0 -1 0]
[ 0 0 0 0 1 0 -2]}
Dimension=Rank4
e)
Col space of B
B_r=[ 1.0000 0 0 0 2.2000 1.0000 -0.2000
0 1.0000 0 0 0.2000 0.5000 -1.2000
0 0 1.0000 0 -0.2000 0 0.2000
0 0 0 1.0000 -3.2000 -2.0000 0.2000
0 0 0 0 0 0 0]----rref(B)
basis of column B
[{ 19 {4 {4 {14
21 -6 -5 10
22 -4 5 13
41 20 0 26
29} 14} -2} 20}]
Dimension is Rank4
d)left null space :Nullspace (AT)[A transpose]
rreft(AT)=[ 1.0000 0 0 0 1.1363
0 1.0000 0 0 0.4340
0 0 1.0000 0 -0.8750
0 0 0 1.0000 0.4279
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]
after apply Null space procedure as in b
gives the basis of left null space as
{[-1309/1152
-125/288
7/8
-493/1152
1]}
Dimesnion:Rank1