In: Statistics and Probability
a. If the true fraction of defects is found to be 2.5%, find the type II error.
b. What is the minimum sample size needed to detect type II error within 5% accuracy if the true fraction of defects is 2.5%?
c. How would a. and b. change if the hypothesis was changed to test the proportion of vehicles with rollover problem is more than 2%?
Ho :   p =    0.02  
           
   
H1 :   p ╪   0.02  
    (Two tail test)      
   
          
           
   
Level of Significance,   α =   
0.05          
       
Number of Items of Interest,   x =  
17          
       
Sample Size,   n =    600  
           
   
          
           
   
Sample Proportion ,    p̂ = x/n =   
0.0283          
       
          
           
   
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0057          
       
Z Test Statistic = ( p̂-p)/SE = (   0.0283  
-   0.02   ) /   0.0057  
=   1.4580
          
           
   
  
          
           
   
p-Value   =   0.144832382   [excel
formula =2*NORMSDIST(z)]      
       
Decision:   p value>α ,do not reject null hypothesis
          
           
There is not enough evidence that proportion of vehicles with
rollover problem is different than 2%.
a)
true proportion,   p=   0.025  
           
       
          
           
       
hypothesis proportion,   po=   
0.020          
           
significance level,   α =    0.05  
           
       
sample size,   n =   600  
           
       
          
           
       
std error of sampling distribution,   σpo =
√(po*(1-po)/n) = √ (   0.020   *  
0.980   /   600   ) =  
0.0057
std error of true proportion,   σp = √(p(1-p)/n) = √
(   0.025   *   0.975  
/   600   ) =   0.0064
Zα/2   = ±   1.960   (two tailed
test)          
       
We will fail to reject the null (commit a Type II error) if we get
a Z statistic between      
           
    -1.960   and   1.960
these Z-critical value corresponds to some X critical values ( X
critical), such that      
           
           
-1.960   ≤(p^ - po)/σpo≤   1.960  
           
       
-1.960   *σpo + po≤ p^ ≤   1.960  
*σpo + po          
       
0.0088   ≤ p^ ≤   0.0312  
           
       
          
           
       
now, type II error is ,ß =       
P(0.0088< p^ < 0.0312)       =P(
(0.0088-p) /σp < Z < (0.0312-p)/σp )  
           
       =P( (0.0088-0.025)/0.0064) < Z
< (0.0312-0.025)/0.0064 )      
           
   
so, P(   -2.542   < Z <  
0.973   ) = P ( Z ≤   0.973   ) - P (
Z ≤   -2.542   )
       =   0.835  
-   0.006   =  
0.8292  
b)
True mean,   p =    0.025
hypothesis mean,   po =    0.02
      
Level of Significance ,    α =    0.05
power =    1-ß =    0.95
ß=       0.05
      
      
Z (α/2)=       1.960
      
Z (ß) =        1.645
      
sample size needed =    n = po*(1-po)[Z(α/2) + Z(ß) ]² /
(p-po)² =   10187.8526
      
so, sample size =       
10188.000
C)
Probability of error increases.
Sample size will increase
Thanks in advance!
revert back for doubt
Please upvote