In: Statistics and Probability
Solution :
Given that ,
mean = = 60
standard deviation = = 2
a) P(x > 68) = 1 - P(x < 68)
= 1 - P[(x - ) / < (68 - 60) / 2)
= 1 - P(z < 4)
= 1 - 1
0.0000
Probability = 0.0000
b) P(x < 63) = P[(x - ) / < (63 - 60) /2 ]
= P(z < 1.5)
= 0.9332
Probability = 0.9332
c) P(58.5 < x < 59.6 ) = P[(58.5 - 60)/ 2) < (x - ) / < (59.6 - 60) / 2) ]
= P(-0.75 < z < -0.2)
= P(z < -0.2) - P(z <-0.75 )
= 0.4207 - 0.2266
0.1941
Probability = 0.1941
d) n = 25
= / n = 2 / 25 = 0.4
= P[(58.5 - 60) /0.4 < ( - ) / < (59.6 - 60) /0.4 )]
= P(-3.75 < Z < -1)
= P(Z < -1) - P(Z < -3.75)
= 0.1587 - 0.0001
0.1586
Probability = 0.1586