Question

In: Finance

Describe the 3 factors that affect the size of the premium in an option contract. All...

Describe the 3 factors that affect the size of the premium in an option contract.

All three factors need detailed explanation please!

Solutions

Expert Solution

The three factors that affect the size of premium in options contract are as follows :-

1. Underlying asset and the strike price - the movement in the price of assets and their strike price affect the option premium in a way that if the price of a stock has an increasing trend the call premium will rise as it allows you to buy the stock at a predefined price now and if the the prices surpass the strike price you make profit and the vice versa is the case with putt premium.

2. Time to expiration - as the time to expiration of the contract reduces, the premium reduces because their is left time less to exercise the option

3. Implied volatility - is there is more volatility like in today's recessional environment there is more probability of prices going up and down drastically so the call and put premium both rises.

I hope this helps you

Please press the like button

Feel free to ask questions in comments

Also press the like button

Thanks & Regards


Related Solutions

5. You buy a put option on the £ for $.021/£. The option contract size is...
5. You buy a put option on the £ for $.021/£. The option contract size is £500,000. The exercise price is $1.45/£. When the option matures, the spot rate is $1.4055/£. What is your overall profit/loss on the put option?
buy one call option on 1 gold contract (100 oz.). Exercise Price = $1400/oz Option Premium...
buy one call option on 1 gold contract (100 oz.). Exercise Price = $1400/oz Option Premium = $30/oz If the price of gold moves to $1350, what is the net option payoff in $
Describe two factors that affect iron absorption.
Describe two factors that affect iron absorption.
Show profit (or loss) from buying a put option for a contract size of 62500 euro....
Show profit (or loss) from buying a put option for a contract size of 62500 euro. Assume exercise price is $1.10 and option premium is $0.03. Also list cash inflows and outflows at $1.08, $1.10, $1.12, and at $1.14. What is the break-even price?
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $87 per share, the standard deviation of its return is 42 percent...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock.    A stock is currently priced at $82 per share, the standard deviation of its return is 48 percent...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is:    C=S×e−dt×N(d1)−E×e−Rt×N(d2)C=S×e−dt×N(d1)⁢−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√)d1= [ln(S⁢  /E⁢ ) +(R⁢−d+σ2/2)×t ] (σ−t)  d2=d1−σ×t√d2=d1−σ×t    All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+CS×e−dt+P=E×e−Rt+C where...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes...
In addition to the five factors, dividends also affect the price of an option. The Black–Scholes Option Pricing Model with dividends is: C=S×e−dt×N(d1)−E×e−Rt×N(d2) d1=[ln(S/E)+(R−d+σ2/2)×t](σ−t√) d2=d1−σ×t√ All of the variables are the same as the Black–Scholes model without dividends except for the variable d, which is the continuously compounded dividend yield on the stock. The put–call parity condition is also altered when dividends are paid. The dividend-adjusted put–call parity formula is: S×e−dt+P=E×e−Rt+C where d is again the continuously compounded dividend yield....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT