Question

In: Mechanical Engineering

Liquid bismuth flows at a rate of 4.5 kg/s through a 5.0-cm-diameter stainless-steel tube. The bismuth...

Liquid bismuth flows at a rate of 4.5 kg/s through a 5.0-cm-diameter stainless-steel tube. The bismuth enters at 415oC and is heated to 440oC as it passes through the tube. If a constant heat flux is maintained along the tube and the tube wall is at a temperature 20oC higher than the bismuth bulk temperature, calculate the length of tube required to effect the heat transfer. For liquid bismuth: ? = 1.34 ?10-3 kg/m· s Cp = 0.149 kJ/kg.oC k = 15.6 W/m. oC Pr = 0.013

Answer: L = 1.57 m

Solutions

Expert Solution


Related Solutions

9. A stainless steel tube having an outside diameter of 0.6 cm and a wall thickness...
9. A stainless steel tube having an outside diameter of 0.6 cm and a wall thickness of 0.05 cm is to be insulated with a material having a thermal conductivity of 0.065 W/mK. If the inner and outer convective heat transfer coefficients are 5.9 W/m2K. what will be the heat loss per meter of length for insulation thicknesses of 0, 0.25, 0.5, 0.75, 1.00, and 1.25 cm if the inside temperature is 95 C and the outside temperature is 10...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the first segment at a speed of 9.0 m/s . What is the speed in the second segment? What is the speed in the third segment? What is the volume flow rate through the pipe? for the love of god please give me the right answer. everyone has given me the wrong answers so far and i'm pissed off.
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the first segment at a speed of 9.0 m/s . What is the speed in the second segment? What is the speed in the third segment? What is the volume flow rate through the pipe?
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe...
A 8.0-cm-diameter horizontal pipe gradually narrows to 5.0 cm . When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 31.0 kPa and 25.0 kPa , respectively. What is the volume rate of flow?
Steam in a heating system flows through tube whose outer diameter is 10 cm and whose...
Steam in a heating system flows through tube whose outer diameter is 10 cm and whose walls are maintained at a temperature of 150°C. Circular aluminum alloy 2024-T6 fins (k = 186 W/m · °C) of outer diameter 15 cm and constant thickness 2 mm are attached to the tube. Heat is transferred to the surrounding air at T∞ = 25°C, with a heat transfer coefficient of 50 W/m2 C . If the total tube length is 5 m and...
A stainless steel (AISI 316) tube used to transport a chilled pharmaceutical has an inner diameter...
A stainless steel (AISI 316) tube used to transport a chilled pharmaceutical has an inner diameter of 30 mm and a wall thickness of 3 mm. The pharmaceutical and ambient air are at temperatures of 6oC and 23oC, respectively, while the corresponding inner and outer convection coefficients are 400 W/m2 K and 6 W/m2 K, respectively. (a) What is the heat gain per unit tube length? (b) What is the heat gain per unit length if a 10-mm thick layer...
Water flows at 20 cm^3/sec through a long straight tube that has an inner diameter of...
Water flows at 20 cm^3/sec through a long straight tube that has an inner diameter of 1 cm. As the water flows, a toxin leaches from the tube into the water. At the inner surface of the tube, the toxin attains its saturation concentration, Csat = 2 mM. Fortunately, upon entering the water the toxin also irreversibly degrades into a non-toxic compound; this degradation follows first-order kinetics. Toxin Diffusivity D = 10^-5 cm^2/sec Toxin mass transfer coefficient k = 1.38...
Air flows through this tube at a rate of 1400cm3/s . Assume that air is an...
Air flows through this tube at a rate of 1400cm3/s . Assume that air is an ideal fluid. What is the height h of mercury in the right side of the U-tube?
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...
A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.09 m/s and the pipe diameter is 10.9 cm. At location 2 the pipe diameter is 14.3 cm. At location 1 the pipe is 9.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h....
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h. Assume the ratio L/D >10, and the wall temperature is constant at 80◦C. The outlet temperature is 50°C The properties of water at the film temperature are density rho = ? = 985 ?/?3, specific heat ?p = 4180 ?/?, conductivity ? = 0.651 ?/?, dynamic viscosity mu= ?? = 4.71 × 10−4 ?/?, At the wall temperature of 80°C we have dynamic viscosity...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT