Question

In: Statistics and Probability

An engineer is going to redesign an ejection seat for an airplane. The seat was designed...

An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and 191 lb. The new population of pilots has normally distributed weights with a mean of 137 and a standard deviation of 30.8lb.

a. If a pilot is randomly​ selected, find the probability that his weight is between 130lb and 191lb?

b. If different pilots are randomly​ selected, find the probability that their mean weight is between 130lb and 191lb.

​(Round to four decimal places as​ needed.)

Solutions

Expert Solution

Let X be pilot weights

X is normally distributed with and

a) If a pilot is randomly​ selected, find the probability that his weight is between 130lb and 191lb?

It is asked that P(130 < X < 191), to standardise this substitute

=> P(130 < X < 191) = P( (130-137)/30.8 < Z < (191-137)/30.8 ) = P(-0.227 < Z < 1.753)

From standard normal distribution table,

P(-0.227 < Z < 1.753) = 0.96 - 0.41 = 0.55

b) If different pilots are randomly​ selected, find the probability that their mean weight is between 130lb and 191lb.

Here the question should specify the number of pilots, like "if 27 different pilots...." or "if 52 different pilots...." etc.

For now, let it be n.

The standard deviation of a sample of size n is  

Let their mean be .

We have to find

P(130 < < 191)

And here we have to substitute and the rest of the process is same like part a.

Again we will have some expression like P( a< Z < b) after this substitution which we can find out using the standard normal distribution table.


Related Solutions

An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 150 lb and 201 lb. The new population of pilots has normally distributed weights with a mean of 159 lb and a standard deviation of 26.6 lb. A. If a pilot is randomly​ selected, find the probability that his weight is between 150 lb and 201 lb.The probability is approximately______? ​(Round to four decimal places as​ needed.) B. If 40...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and 171 lb. The new population of pilots has normally distributed weights with a mean of 138 lb and a standard deviation of 34.8 lb. a. If a pilot is randomly​ selected, find the probability that his weight is between 130 lb and 171 lb. The probability is approximately________. ​ (Round to four decimal places as​ needed.) b....
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 120 lb and 171 lb. The new population of pilots has normally distributed weights with a mean of 130 lb and a standard deviation of 33.7lb. a. If a pilot is randomly selected, find the probability that his weight is between 120 lb and 171 lb. The probability is approximately __. (Round to four decimal places as needed.) b. If...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and 191 lb. The new population of pilots has normally distributed weights with a mean of 140 lb and a standard deviation of 26.2 lb. a. If a pilot is randomly​ selected, find the probability that his weight is between 130 lb and 191 lb. The probability is approximately nothing. ​(Round to four decimal places as​ needed.) b....
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and 171 lb. The new population of pilots has normally distributed weights with a mean of 137 lb and a standard deviation of 29.5 lb . A) If a pilot is randomly​ selected, find the probability that his weight is between 130lb and 171lb. ​(Round to four decimal places as​ needed.) B) If 37 different pilots are randomly​...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 120 lb and 161 lb. The new population of pilots has normally distributed weights with a mean of 129 lb and a standard deviation of 29.1 lb. a. If a pilot is randomly​ selected, find the probability that his weight is between 120 lb and 161 lb. The probability is approximately _____. ​(Round to four decimal places as​ needed.) b....
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 150 lb and 191 lb. The new population of pilots has normally distributed weights with a mean of 156 lb and a standard deviation of 29.1 lb. A. If a pilot is randomly​ selected, find the probability that his weight is between 150 lb and 191 lb. The probability is approximately_______? ​(Round to four decimal places as​ needed.) B. If...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 140 lb and 181 lb. The new population of pilots has normally distributed weights with a mean of 149 lb and a standard deviation of 27.1 lb a. If a pilot is randomly​ selected, find the probability that his weight is between 140 lb and 181 lb. b. If 31 different pilots are randomly​ selected, find the probability that their...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 140 lb and 191 lb. The new population of pilots has normally distributed weights with a mean of 145 lb and a standard deviation of 30.1 lb. b. If 36 different pilots are randomly​ selected, find the probability that their mean weight is between 140 lb and 191 lb. The probability is approximately nothing. ​(Round to four decimal places as​...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed...
An engineer is going to redesign an ejection seat for an airplane. The seat was designed for pilots weighing between 130 lb and 171 lb. The new population of pilots has normally distributed weights with a mean of 138 lb and a standard deviation of 31.6 lb. a. If a pilot is randomly​ selected, find the probability that his weight is between 130 lb and 171 lb. The probability is approximately ? ​(Round to four decimal places as​ needed.) b....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT