In: Computer Science
The sequence 2, 4, 1, 3, 5 has three inversions (2,1), (4,1), (4,3). Using C++ Code an O(nlog(n)) algorithm to count the number of inversions. Use the Merge sort Algorithm, and use the template below: (Use the file below that to test)
countInv.cpp -------------------------------------------------------------------------------------------------------------------------------
#include <vector>
#include <algorithm>
using namespace std;
int mergeInv(vector<int>& nums, vector<int>&
left, vector<int>& right) {
// Your code here
}
int countInv(vector<int>&nums) {
// Your code here
}
CountInv_test.cpp -------------------------------------------------------------------------------------------------------------------------
#include <iostream>
#include <vector>
using namespace std;
int countInv(vector<int>& numvec);
int main()
{
int n;
vector<int> numvec{4, 5, 6, 1, 2, 3};
n = countInv(numvec);
cout << "Number of inversions " << n << endl; //
Should be 9
numvec = {1, 2, 3, 4, 5, 6};
n = countInv(numvec);
cout << "Number of inversions " << n << endl; //
Should be 0
numvec = {6, 5, 4, 3, 2, 1};
n = countInv(numvec);
cout << "Number of inversions " << n << endl; //
Should be 15
numvec = {0, 0, 0, 0, 0, 0};
n = countInv(numvec);
cout << "Number of inversions " << n << endl;; //
Should be 0
}
#include <bits/stdc++.h>
using namespace std;
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the number of inversions in the array */
int mergeSort(vector<int>&arr)
{ int array_size=arr.size();
int temp[array_size];
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array
and
returns the number of inversions in the array. */
int _mergeSort(vector<int>&arr,
vector<int>&temp, int left, int right)
{
int mid, inv_count = 0;
if (right > left) {
/* Divide the array into two parts
and call _mergeSortAndCountInv() for each of the parts */
mid = (right + left) / 2;
/* Inversion count will be sum
of inversions in left-part, right-part and number of inversions in
merging */
inv_count += _mergeSort(arr, temp,
left, mid);
inv_count += _mergeSort(arr, temp,
mid + 1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left,
mid + 1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion
count in the arrays.*/
int merge(int arr[], int temp[], int left,
int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* j is index for right subarray*/
k = left; /* k is index for resultant merged
subarray*/
while ((i <= mid - 1) && (j <= right))
{
if (arr[i] <= arr[j]) {
temp[k++] =
arr[i++];
}
else {
temp[k++] =
arr[j++];
/* this is
tricky -- see above
explanation/diagram for merge()*/
inv_count =
inv_count + (mid - i);
}
}
/* Copy the remaining elements of left
subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right
subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original
array*/
for (i = left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
int main()
{
int arr[] = { 1, 20, 6, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
int ans = CountInv(arr);
cout << " Number of inversions are " <<
ans;
return 0;
}