In: Statistics and Probability
You collect the following information on a sample of 100 adults:
The data set can be found in Mod9-1Data. Run the multiple regression in Minitab. Assume a level of significance of 5%.
Lottery | Educ | Age | Children | Inc1000 |
5 | 15 | 50 | 2 | 41 |
7 | 10 | 26 | 0 | 22 |
0 | 13 | 40 | 3 | 24 |
10 | 9 | 46 | 2 | 20 |
5 | 14 | 40 | 3 | 32 |
5 | 15 | 39 | 2 | 42 |
3 | 8 | 36 | 3 | 18 |
0 | 16 | 44 | 1 | 47 |
0 | 20 | 47 | 4 | 85 |
6 | 10 | 52 | 1 | 23 |
0 | 18 | 51 | 2 | 61 |
0 | 17 | 41 | 2 | 70 |
12 | 9 | 42 | 2 | 22 |
7 | 12 | 53 | 1 | 27 |
11 | 9 | 72 | 1 | 25 |
2 | 16 | 38 | 2 | 43 |
11 | 12 | 41 | 5 | 34 |
2 | 14 | 50 | 3 | 53 |
7 | 9 | 41 | 3 | 20 |
0 | 16 | 52 | 0 | 71 |
10 | 9 | 41 | 2 | 16 |
8 | 10 | 45 | 3 | 19 |
1 | 16 | 58 | 0 | 64 |
11 | 11 | 53 | 0 | 25 |
7 | 14 | 61 | 2 | 31 |
3 | 17 | 30 | 1 | 42 |
5 | 17 | 40 | 0 | 50 |
9 | 11 | 73 | 3 | 31 |
5 | 15 | 43 | 4 | 35 |
10 | 9 | 49 | 3 | 18 |
7 | 10 | 50 | 0 | 26 |
10 | 10 | 27 | 1 | 23 |
1 | 17 | 46 | 3 | 39 |
4 | 14 | 47 | 1 | 22 |
7 | 14 | 47 | 3 | 31 |
8 | 12 | 28 | 1 | 29 |
8 | 14 | 26 | 1 | 29 |
3 | 17 | 32 | 2 | 30 |
5 | 16 | 42 | 5 | 21 |
3 | 11 | 53 | 1 | 26 |
0 | 17 | 46 | 1 | 66 |
8 | 14 | 33 | 3 | 29 |
3 | 16 | 52 | 0 | 48 |
8 | 11 | 58 | 3 | 20 |
0 | 18 | 28 | 3 | 80 |
7 | 10 | 53 | 2 | 31 |
7 | 14 | 43 | 1 | 26 |
0 | 16 | 49 | 2 | 36 |
7 | 9 | 38 | 1 | 26 |
9 | 10 | 44 | 0 | 21 |
8 | 9 | 32 | 1 | 24 |
0 | 12 | 44 | 3 | 18 |
7 | 10 | 52 | 0 | 28 |
0 | 16 | 40 | 2 | 42 |
8 | 11 | 53 | 6 | 21 |
7 | 8 | 43 | 2 | 28 |
8 | 17 | 23 | 0 | 27 |
8 | 12 | 21 | 0 | 34 |
7 | 9 | 50 | 3 | 28 |
9 | 12 | 46 | 1 | 30 |
5 | 7 | 82 | 0 | 23 |
0 | 20 | 45 | 3 | 95 |
0 | 11 | 23 | 0 | 22 |
11 | 9 | 40 | 3 | 27 |
8 | 12 | 36 | 3 | 23 |
0 | 10 | 42 | 1 | 29 |
9 | 7 | 36 | 0 | 25 |
7 | 14 | 58 | 3 | 25 |
0 | 16 | 36 | 0 | 28 |
8 | 9 | 37 | 2 | 25 |
6 | 10 | 53 | 2 | 27 |
7 | 17 | 42 | 2 | 39 |
0 | 19 | 50 | 4 | 63 |
8 | 11 | 33 | 0 | 28 |
8 | 11 | 27 | 3 | 29 |
0 | 16 | 30 | 2 | 34 |
7 | 11 | 40 | 2 | 19 |
6 | 13 | 32 | 2 | 22 |
8 | 11 | 69 | 2 | 17 |
0 | 17 | 24 | 0 | 34 |
1 | 17 | 32 | 2 | 44 |
6 | 8 | 21 | 0 | 28 |
0 | 19 | 31 | 2 | 53 |
10 | 11 | 53 | 1 | 16 |
9 | 14 | 43 | 1 | 22 |
5 | 14 | 39 | 1 | 27 |
0 | 7 | 37 | 2 | 22 |
10 | 8 | 57 | 1 | 23 |
10 | 10 | 31 | 1 | 24 |
13 | 8 | 71 | 0 | 11 |
6 | 15 | 59 | 3 | 50 |
7 | 15 | 33 | 3 | 37 |
3 | 11 | 33 | 3 | 24 |
0 | 11 | 41 | 3 | 30 |
5 | 12 | 53 | 3 | 21 |
0 | 16 | 35 | 1 | 53 |
0 | 17 | 54 | 0 | 31 |
10 | 9 | 55 | 2 | 29 |
6 | 16 | 24 | 0 | 36 |
11 | 12 | 56 | 3 | 27 |
null hypothesis for the test on the slope/coefficient on AGE-
alternative hypothesis=
computed test statistic=
table test statistic=
p-value=
statistical conclusion=
Predicted percentage of income spent of lottery tickets for a person with 12 years of education; 20 years old; 0 children; and an income of $25,000.=
null hypothesis for valid regression test=
alternative hypothesis for valid regression=
computed test statistic for the useful regression test=
table test statistic for the valid regression test=
p-value for the valid regression test=
statistical conclusion for the valid regression test=
SUMMARY OUTPUT | |||||
Regression Statistics | |||||
Multiple R | 0.658387462 | ||||
R Square | 0.43347405 | ||||
Adjusted R Square | 0.409620325 | ||||
Standard Error | 2.909780022 | ||||
Observations | 100 | ||||
ANOVA | |||||
df | SS | MS | F | Significance F | |
Regression | 4 | 615.442121 | 153.8605 | 18.17217 | 4.09443E-11 |
Residual | 95 | 804.347879 | 8.46682 | ||
Total | 99 | 1419.79 | |||
Coefficients | Standard Error | t Stat | P-value | ||
Intercept | 11.90609377 | 1.785196734 | 6.669345 | 1.69E-09 | |
Educ | -0.430018471 | 0.132071926 | -3.25594 | 0.001567 | |
Age | 0.029189885 | 0.025227671 | 1.157058 | 0.25015 | |
Children | 0.093435096 | 0.224313376 | 0.416538 | 0.677956 | |
Inc1000 | -0.074470531 | 0.027726044 | -2.68594 | 0.008537 |
1. null hypothesis for the test on the slope/coefficient on AGE- H0: β2 = 0
2. alternative hypothesis= H1: β2 ≠ 0
3. computed test statistic= 1.157
4. table test statistic (Using Excel function T.INV.2T(probability,n-2)) = T.INV.2T(0.05,98) = 1.984
5. p-value = 0.250
6. statistical conclusion = Since p-value is more than 0.05, we do not reject null hypothesis and conclude that β2 = 0.
7. Predicted percentage of income spent of lottery tickets for a person with 12 years of education; 20 years old; 0 children; and an income of $25,000.=
y = 11.906 - 0.43*Educ + 0.029*Age + 0.093*Children - 0.074*Inc100
= 11.906 - 0.43*12 + 0.029*20 + 0.093*0 - 0.074*25 = 5.467
8. null hypothesis for valid regression test= H0: β1 = β2 = β3 = β4 = 0
9. alternative hypothesis for valid regression= At least one βi ≠ 0
10. computed test statistic for the useful regression test= 18.172
11. table test statistic for the valid regression test (Using Excel function F.INV(probability,k-1,n-k)) = F.INV(0.05,4-1,100-4) = 0.117
12. p-value for the valid regression test= 0.000
13. statistical conclusion for the valid regression test= Since p-value is less than 0.05, we reject null hypothesis and conclude that at least one βi ≠ 0.