In: Accounting
What is the future worth of a series of equal quarterly payments of $25,000 if the series extends for six years at APR=8% ... a. (5 pts) Compounded quarterly (4 quarters per year)? b. (5 pts) Compounded monthly (3 months per quarter)? c. (5 pts) Compounded weekly (13 weeks per quarter)?
Future Worth of series of equal quarterly payment: | |||||||||||||
a. | If compounded quarterly | $ 7,60,546.56 | |||||||||||
b. | If compounded Monthly | $ 7,61,787.84 | |||||||||||
c. | If compounded Weekly | $ 7,62,271.82 | |||||||||||
Working: | |||||||||||||
a. | If compounded quarterly | ||||||||||||
1) | Future Value of annuity of 1 | = | (((1+i)^n)-1)/i | Where, | |||||||||
= | (((1+0.02)^24)-1)/0.02 | i | 8%/4 | = | 2% | ||||||||
= | 30.42186 | n | 6*4 | = | 24 | ||||||||
2) | Future Value of annuity of $25,000 | = | $ 25,000.00 | x | 30.42186 | ||||||||
= | $ 7,60,546.56 | ||||||||||||
b. | If compounded Monthly | ||||||||||||
1) | Effective quarterly rate | = | ((1+(i/n))^n)-1 | Where, | |||||||||
= | ((1+(0.02/3))^3)-1 | i | quarterly rate | 2% | |||||||||
= | 0.02013363 | n | Compounding per quarter | 3 | |||||||||
2) | Future Value of annuity of 1 | = | (((1+i)^n)-1)/i | Where, | |||||||||
= | (((1+0.02013363)^24)-1)/0.02013363 | i | 0.02013363 | ||||||||||
= | 30.47151 | n | 6*4 | = | 24 | ||||||||
3) | Future Value of annuity of $25,000 | = | $ 25,000.00 | x | 30.47151 | ||||||||
= | $ 7,61,787.84 | ||||||||||||
c. | If compounded Weekly | ||||||||||||
1) | Effective quarterly rate | = | ((1+(i/n))^n)-1 | Where, | |||||||||
= | ((1+(0.02/13))^13)-1 | i | quarterly rate | 2% | |||||||||
= | 0.020185661 | n | Compounding per quarter | 13 | |||||||||
2) | Future Value of annuity of 1 | = | (((1+i)^n)-1)/i | Where, | |||||||||
= | (((1+0.02018566)^24)-1)/0.02018566 | i | 0.02018566 | ||||||||||
= | 30.49087 | n | 6*4 | = | 24 | ||||||||
3) | Future Value of annuity of $25,000 | = | $ 25,000.00 | x | 30.49087 | ||||||||
= | $ 7,62,271.82 | ||||||||||||