In: Statistics and Probability
At a local department store, let X be an independent variable for the number of salespeople on the floor and y the dependent variable for daily sales in thousands of dollars. The next screen will present the data.
X={5, 6, 7, 8, 9, 10} Y = {7, 8, 9, 12, 15, 20}
1. Write down the prediction equation.
2. Write down SSE, S2, SSyy and S(std. dev).
3. Predict the retail sales when there are 10 salespeople on the floor and then calculate the prediction error.
4. Construct a 95% confidence interval for b1.
5. Test if the number of salespeople on the floor is significant to the prediction of y.
6. Find the coefficient determination and interpret.
7. Find the 95% confidence interval for E(Y) when x = 10 salespeople.
8. Find a 95% prediction interval for Y when x = 10 salespeople.
9. Predict Y if x = 4 salespeople and find the confidence interval for E(y) and the prediction interval for Y. Is there a residual? If not, why not? If yes then what is it?
1)
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 45.00 | 71.00 | 17.50 | 122.83 | 44.50 |
mean | 7.50 | 11.83 | SSxx | SSyy | SSxy |
` n = 6
here, x̅ = Σx / n= 7.500
ȳ = Σy/n = 11.833
SSxx = Σ(x-x̅)² = 17.5000
SSxy= Σ(x-x̅)(y-ȳ) = 44.5
estimated slope , ß1 = SSxy/SSxx =
44.5/17.5= 2.5429
intercept,ß0 = y̅-ß1* x̄ = 11.8333- (2.5429
)*7.5= -7.2381
Regression line is, Ŷ= -7.2381 +
( 2.5429 )*x
...............
2)
SSE= (SSxx * SSyy - SS²xy)/SSxx =
9.6762
std error ,Se = √(SSE/(n-2)) =
1.5553
SSyy =122.83
..............
3)
Predicted Y at X= 10 is
Ŷ= -7.23810 +
2.54286 *10= 18.1905
error =1.8095
.............
4)
confidence interval for slope
α= 0.05
t critical value= t α/2 =
2.776 [excel function: =t.inv.2t(α/2,df) ]
estimated std error of slope = Se/√Sxx =
1.5553/√17.5= 0.372
margin of error ,E= t*std error = 2.776
* 0.372 = 1.032268
estimated slope , ß^ = 2.5429
lower confidence limit = estimated slope - margin of error
= 2.5429 - 1.032
= 1.5106
upper confidence limit=estimated slope + margin of error
= 2.5429 + 1.032
= 3.5751
.............
5)
Ho: β1= 0
H1: β1╪ 0
n= 6
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
1.5553/√17.5= 0.3718
t stat = estimated slope/std error =ß1 /Se(ß1) =
(2.5429-0)/0.3718= 6.84
Degree of freedom ,df = n-2= 4
p-value = 0.0024
decison : p-value<α , reject Ho
Conclusion: Reject Ho and conclude that slope is
significantly different from zero
................
6)
R² = (SSxy)²/(SSx.SSy) = 0.9212
Approximately 92.12% of variation in
observations of variable Y, is explained by variable x
.....
7)
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
1.126
margin of error,E=t*Std error=t* S(ŷ) =
2.7764 * 1.126 =
3.1253
Confidence Lower Limit=Ŷ +E = 18.190
- 3.125 = 15.0651
Confidence Upper Limit=Ŷ +E = 18.190
+ 3.125 = 21.3158
.............
8)
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
1.9199
margin of error,E=t*std error=t*S(ŷ)=
2.776 * 1.920 =
5.3306
Prediction Interval Lower Limit=Ŷ -E =
18.190 - 5.331 =
12.8599
Prediction Interval Upper Limit=Ŷ +E =
18.190 + 5.331 =
23.5211
............
9)
Predicted Y at X= 4 is
Ŷ= -7.23810 +
2.54286 *4= 2.9333
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =
1.448
margin of error,E=t*Std error=t* S(ŷ) =
2.7764 * 1.448 =
4.0201
Confidence Lower Limit=Ŷ +E =
2.933 - 4.020 =
-1.0868
Confidence Upper Limit=Ŷ +E = 2.933
+ 4.020 = 6.9534
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
2.1250
margin of error,E=t*std error=t*S(ŷ)=
2.776 * 2.125 =
5.8999
Prediction Interval Lower Limit=Ŷ -E =
2.933 - 5.900 =
-2.9666
Prediction Interval Upper Limit=Ŷ +E =
2.933 + 5.900 =
8.8332
.........
observed value of y at x=4 is not given, so, we cannot calalulate residual for y at x = 4
...................
thanks
please upvote