Question

In: Statistics and Probability

At a local department store, let X be an independent variable for the number of salespeople...

At a local department store, let X be an independent variable for the number of salespeople on the floor and y the dependent variable for daily sales in thousands of dollars. The next screen will present the data.

X={5, 6, 7, 8, 9, 10}                  Y = {7, 8, 9, 12, 15, 20}

1.   Write down the prediction equation.

2. Write down SSE, S2, SSyy and S(std. dev).

3. Predict the retail sales when there are 10 salespeople on the floor and then calculate the prediction error.

4. Construct a 95% confidence interval for b1.

5. Test if the number of salespeople on the floor is significant to the prediction of y.

6. Find the coefficient determination and interpret.

7. Find the 95% confidence interval for E(Y) when x = 10 salespeople.

8. Find a 95% prediction interval for Y when x = 10 salespeople.            

9.   Predict Y if x = 4 salespeople and find the confidence interval for E(y) and the prediction interval for Y. Is there a residual? If not, why not? If yes then what is it?

Solutions

Expert Solution

1)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 45.00 71.00 17.50 122.83 44.50
mean 7.50 11.83 SSxx SSyy SSxy

`   n =   6      
here, x̅ = Σx / n=   7.500          
ȳ = Σy/n =   11.833          
SSxx =    Σ(x-x̅)² =    17.5000      
SSxy=   Σ(x-x̅)(y-ȳ) =   44.5      
              
estimated slope , ß1 = SSxy/SSxx =   44.5/17.5=   2.5429      
intercept,ß0 = y̅-ß1* x̄ =   11.8333- (2.5429 )*7.5=   -7.2381      
              
Regression line is, Ŷ=   -7.2381   + (   2.5429   )*x

...............

2)

SSE=   (SSxx * SSyy - SS²xy)/SSxx =    9.6762
std error ,Se =    √(SSE/(n-2)) =    1.5553
SSyy =122.83
..............

3)

Predicted Y at X=   10   is          
Ŷ=   -7.23810   +   2.54286   *10=   18.1905

error =1.8095

.............

4)

confidence interval for slope                  
α=   0.05              
t critical value=   t α/2 =    2.776   [excel function: =t.inv.2t(α/2,df) ]      
estimated std error of slope = Se/√Sxx =    1.5553/√17.5=   0.372          
                  
margin of error ,E= t*std error =    2.776   *   0.372   =   1.032268
estimated slope , ß^ =    2.5429              
                  
lower confidence limit = estimated slope - margin of error =   2.5429   -   1.032   =   1.5106
upper confidence limit=estimated slope + margin of error =   2.5429   +   1.032   =   3.5751


.............

5)

Ho:   β1=   0
H1:   β1╪   0
n=   6  
alpha =   0.05  
estimated std error of slope =Se(ß1) = Se/√Sxx =    1.5553/√17.5=   0.3718
t stat = estimated slope/std error =ß1 /Se(ß1) =    (2.5429-0)/0.3718=   6.84
Degree of freedom ,df = n-2=   4  
      
p-value =    0.0024  
decison :    p-value<α , reject Ho  
Conclusion:   Reject Ho and conclude that slope is significantly different from zero  
................

6)

R² =    (SSxy)²/(SSx.SSy) =    0.9212
Approximately    92.12%   of variation in observations of variable Y, is explained by variable x
.....

7)

standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    1.126              
margin of error,E=t*Std error=t* S(ŷ) =   2.7764   *   1.126   =   3.1253
                  
Confidence Lower Limit=Ŷ +E =    18.190   -   3.125   =   15.0651
Confidence Upper Limit=Ŷ +E =   18.190   +   3.125   =   21.3158

.............

8)

For Individual Response Y                  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   1.9199              
margin of error,E=t*std error=t*S(ŷ)=    2.776   *   1.920   =   5.3306
                  
Prediction Interval Lower Limit=Ŷ -E =   18.190   -   5.331   =   12.8599
Prediction Interval Upper Limit=Ŷ +E =   18.190   +   5.331   =   23.5211

............

9)

Predicted Y at X=   4   is          
Ŷ=   -7.23810   +   2.54286   *4=   2.9333
                  
standard error, S(ŷ)=Se*√(1/n+(X-X̅)²/Sxx) =    1.448              
margin of error,E=t*Std error=t* S(ŷ) =   2.7764   *   1.448   =   4.0201
                  
Confidence Lower Limit=Ŷ +E =    2.933   -   4.020   =   -1.0868
Confidence Upper Limit=Ŷ +E =   2.933   +   4.020   =   6.9534
                  

For Individual Response Y                  
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =   2.1250              
margin of error,E=t*std error=t*S(ŷ)=    2.776   *   2.125   =   5.8999
                  
Prediction Interval Lower Limit=Ŷ -E =   2.933   -   5.900   =   -2.9666
Prediction Interval Upper Limit=Ŷ +E =   2.933   +   5.900   =   8.8332

.........

observed value of y at x=4 is not given, so, we cannot calalulate residual for y at x = 4

...................

thanks

please upvote




Related Solutions

At a local department store, let X be an independent variable for the number of salespeople...
At a local department store, let X be an independent variable for the number of salespeople on the floor and y the dependent variable for daily sales in thousands of dollars. The next screen will present the data. X={5, 6, 7, 8, 9, 10}                Y = {7, 8, 9, 12, 15, 20} 1.   Write down the prediction equation. 2. Write down SSE, S2, SSyy and S(std. dev). 3. Predict the retail sales when there are 10 salespeople on...
At a used dealership, let X be an independent variable representing the age in years of...
At a used dealership, let X be an independent variable representing the age in years of a motorcycle and Y be the dependent variable representing the selling price of used motorcycle. The data is now given to you. X = {5, 10, 12, 14, 15} Y = {500, 400, 300, 200, 100} 1) What is the value for S^2? 2) What is the value for s? 3) Construct a 95% confidence interval for B1. what is the upper bound and...
Let X be a random variable that is equal to the number of times a 5...
Let X be a random variable that is equal to the number of times a 5 is rolled in three rolls of a fair 5-sided die with the integers 1 through 5 on the sides. What is E[X2 ]? What is E2 [X], that is, (E[X])2 ? Justify your answers briefly
Exercise 3.3 At a used dealership, let X be an independent variable representing the age in...
Exercise 3.3 At a used dealership, let X be an independent variable representing the age in years of a motorcycle and Y be the dependent variable representing the selling price of used motorcycle. The data is now given to you. X = {5, 10, 12, 14, 15} Y = {500, 400, 300, 200, 100} A.) Calculate S2 and S. B.) Interpret S.
There is a store selling newspapers. The number of daily sales X is a random variable...
There is a store selling newspapers. The number of daily sales X is a random variable and its expected value is 100 and the variance is 100. If the profit per one newspaper is 20 yen and the fixed cost is 500 yen per day, what is the variance of the profit per day? (Answer in the form of an integer or an irreducible fraction.)
Let X be the random variable representing the number of calls received in an hour by...
Let X be the random variable representing the number of calls received in an hour by a 911 emergency service. A probability distribution of X is given below. Value of X 0 1 2 3 4 Probability P(x) 0.32 ____ ____ 0.16 0.08 (a) Suppose the probability that X = 1 and the probability that X = 2 are the same. What are these probabilities? Incorrect: Your answer is incorrect. (b) What is the probability that at least one call...
Let X be a Bin(100, p) random variable, i.e. X counts the number of successes in...
Let X be a Bin(100, p) random variable, i.e. X counts the number of successes in 100 trials, each having success probability p. Let Y = |X − 50|. Compute the probability distribution of Y.
Let discrete random variable X be the number of flips of a biased coin required to...
Let discrete random variable X be the number of flips of a biased coin required to get tails, where P(tails) = 1/3 . a) Calculate the probability for every value of X from 1 to 10. b) Sketch a plot of the p.m.f. of X for the first 10 flips. c) Sketch a plot the c.d.f. of X for the first 10 flips.
Let X be a random variable representing the number of years of education an individual has,...
Let X be a random variable representing the number of years of education an individual has, and let Y be a random variable representing an individual’s annual income. Suppose that the latest research in economics has concluded that: Y = 6X +U (1) is the correct model for the relationship between X and Y , where U is another random variable that is independent of X. Suppose Var(X) = 2 and Var(Y ) = 172. a. Find Var(U). b. Find...
Let X be a random variable with mean μ and variance σ2. Given two independent random...
Let X be a random variable with mean μ and variance σ2. Given two independent random samples of sizes n1 = 9 and n2 = 7, with sample means X1-bar and X2-bar, if X-bar = k X1-bar + (1 – k) X2-bar, 0 < k < 1, is an unbiased estimator for μ. If X1-bar and X2-bar are independent, find the value of k that minimizes the standard error of X-bar.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT