Question

In: Mechanical Engineering

The propeller shaft of a large ship has an outside diameter of 350 mm and inside...

The propeller shaft of a large ship has an outside diameter of 350 mm and inside diameter 250mm. the shaft is rated for a maximum of shear stress 62 MPa.

1) if the shaft is runnning at 500 rpm what is the maximum power that can be transmitted without exceeding allowable stress.

2) if the rotational speed of the shaft is doubled but the power requirements unchanged what happens to the shear stress in the shaft? calculate valures.

Solutions

Expert Solution


Related Solutions

) A 50 mm-diameter propeller was installed in a 150 mm-diameter water pipe and the propeller...
) A 50 mm-diameter propeller was installed in a 150 mm-diameter water pipe and the propeller speed was measured for a range of water discharge in the pipe. The water had a density and dynamic viscosity of 1000 kg/m3 and 0.00112 Ns/m2 respectively. The measured results were as follows: Q (litres/s): 12 28 45 63 95 120 160 180 N (rps): 5 10 15 20 30 40 60 80 Plot the dependence of propeller coefficient against propeller Reynolds number. A...
A particular manufacturing design requires a shaft with a diameter between 21.91 mm and 22.018 mm....
A particular manufacturing design requires a shaft with a diameter between 21.91 mm and 22.018 mm. The manufacturing process yields shafts with diameters normally​ distributed, with a mean of 22.003 mm and a standard deviation of 0.006 mm. Complete parts​ (a) through​ (c). a. For this process what is the proportion of shafts with a diameter between 21.91 mm and 22.00 mm question mark The proportion of shafts with diameter between 21.91 mm and 22.00 mm is nothing. b. For...
. A steam main (outside diameter of 16.8 cm and inside diameter of 15.4 cm) is...
. A steam main (outside diameter of 16.8 cm and inside diameter of 15.4 cm) is covered with 5-cm of high temperature insulation (k = 0.095 W/m. K) and 3.8 cm of lower temperature insulation (k = 0.07W/m. K). Calculate the heat loss from 150 m pipe assuming that inner and outer surface temperatures of the insulation are 450 and 30 °C, respectively. Also determine the temperature at the interface between two layers of insulation (10 points).
A particular manufacturing design requires a shaft with a diameter of 17.000 ​mm, but shafts with...
A particular manufacturing design requires a shaft with a diameter of 17.000 ​mm, but shafts with diameters between 16.988 mm and 17.012 mm are acceptable. The manufacturing process yields shafts with diameters normally​ distributed, with a mean of 17.004 mm and a standard deviation of 0.004 mm. Complete parts​ (a) through​ (d) below. a. For this​ process, what is the proportion of shafts with a diameter between 16.988mm and 17.000 mm​? The proportion of shafts with diameter between 16.988 mm...
A hollow, round column has length (L = 1500 mm), outside diameter (do = 20 mm)...
A hollow, round column has length (L = 1500 mm), outside diameter (do = 20 mm) and inside diameter (di = 14 mm). If the column is made of steel (E = 207 GPa, Sy = 300 MPa), then determine if it is a Johnson or an Euler column and find the critical load Pcr for each of the following end-conditions: (a) Pinned-pinned (b) Fixed-pinned (c) Fixed-fixed (d) Fixed-free
A long, straight horizontal pipeline of diameter 350 mm and effective roughness size 0.03 mm is...
A long, straight horizontal pipeline of diameter 350 mm and effective roughness size 0.03 mm is to be constructed to convey crude oil of density 860 kg/m3 and absolute viscosity 0.0064 N s∕m2 from the oilfield to a port at a steady rate of 7000 m3/day. Booster pumps, each providing a total head of 20 m with an overall efficiency of 60%, are to be installed at regular intervals. Determine the required spacing of the pumps and the power consumption...
A circular shaft, 100 mm diameter is subjected to combined bending moment and torque, the bending...
A circular shaft, 100 mm diameter is subjected to combined bending moment and torque, the bending moment being 3 times the torque. If the direct tension yield point of the material is 300 MN/m2 and the factor of safety on yield is to be 4, calculate the allowable twisting moment by the three following theories of failure: (a) Maximum principal stress theory (b) Maximum shear stress theory (c) Maximum shear strain energy theory.
3.7-4 A solid steel shaft ABC with diameter d=40 mm is driven at A by a...
3.7-4 A solid steel shaft ABC with diameter d=40 mm is driven at A by a motor that transmits 75kW to the shaft at 15 Hz. The gears at B and C drive machinery requiring power equal to 50kW and 25 kW, respectively. Compare the maximum shear stress and angle of twist in the shaft between the motor at A and the gear at C. Assume that G=75 GPa.
A cast iron water pipe of 500 mm inside diameter and 20 mm thick, is supported...
A cast iron water pipe of 500 mm inside diameter and 20 mm thick, is supported over a span of 10 meters. Find the maximum bending stress in the pipe metal, when the pipe is running full. Take density of cast iron = 70.6 kN/m3 and water = 9.8 kN/m3
A helical compression spring is wound using 1 mm-diameter music wire. The outside coil diameter of...
A helical compression spring is wound using 1 mm-diameter music wire. The outside coil diameter of the spring is 11 mm. The ends are squared and there are 12 total turns. (a) Estimate the torsional yield strength of the wire. (b) Estimate the static load corresponding to the yield strength. (c) Estimate the scale of the spring. (d) Estimate the solid length of the spring. (e) Is there any possibility for buckling?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT