Question

In: Statistics and Probability

An airline estimates that 94% of people booked on their flights actually show up. if the...

An airline estimates that 94% of people booked on their flights actually show up. if the airline books 54 people for a flight, what is the probability that 50 or more people will show up for the flight (round 4 decimals)

Solutions

Expert Solution

An airline estimates that 94% of people booked on their flights actually show up.

Airline books 54 people

Let X be the number of people who will show up out of these 54 people

So, let X follows Binomial (n,p) , where n=54, p=0.94

Here p=0.94 is the probability that a person will show up.

And 1-p = 1-0.94= 0.06 is the probability that a person will not show up

So, pmf of X is,

P(X=x)=54Cx × (0.94)x × (0.06)54-x  , x= 0,1 2,3,........,54.

P(50 or more people will show up)

= P(X=50)+P(X=51)+P(X=52)+P(X=53)+P(X=54)

=54C50 × (0.94)50 × (0.06)54-50 + 54C51 × (0.94)51× (0.06)54-51 + 54C52 × (0.94)52 × (0.06)54-52 + 54C53 × (0.94)53 × (0.06)54-53 + 54C54× (0.94)54 × (0.06)54-54

= 316251× (0.94)50 × (0.06)4  + 24804× (0.94)51× (0.06)3

+ 1431× (0.94)52 × (0.06)2 + 54× (0.94)53× (0.06) + (0.94)54

= 0. 7778


Related Solutions

An airline estimates that 90% of people booked on their flights actually show up. If the...
An airline estimates that 90% of people booked on their flights actually show up. If the airline books 82 people on a flight for which the maximum number is 78, what is the probability that the number of people who show up will exceed the capacity of the plane? (binomial probability)
An airline estimates that 80% of passengers who reserve the tickets actually show up for the...
An airline estimates that 80% of passengers who reserve the tickets actually show up for the flights. Based on this information, it has to decide how many tickets it will sell for each flight, which is typically more than the number of seats actually available. In the economy section of a particular aircraft, 200 seats are available. The airline sells 225 seats. What is the probability that more passengers will show up than there are seats for?
The probability that a person who booked a flight will actually show up is 0.95. If...
The probability that a person who booked a flight will actually show up is 0.95. If the airline books 104 people on a flight for which the maximum capacity is 100, what is the probability that there will be enough seats for everyone who shows up? Round your answer to 3 decimal places.
On average, only 95% of people bought an airline ticket will show up in the airport....
On average, only 95% of people bought an airline ticket will show up in the airport. In an airline’s flight, 400 people bought tickets. What is the probability that the number of people coming to the airport is at least 380 but no more than 390.
There was an SRS of 100 flights on a large airline (airline 1) that showed that...
There was an SRS of 100 flights on a large airline (airline 1) that showed that 64 of the flights were on time. An SRS of 100 flights of another large airline (airline 2) showed that 80 of the flights were on time. Let p1 and p2 be the proportion of all flights that are on time for these two airlines. What is a 95% confidence interval for the difference p1-p2? (-.222, -.098) (-.263, -.057) (-.218, -.102) (-.283, -.038) (.098,...
Because not all airline passengers show up for their reserved seat, an airline sells 125 tickets...
Because not all airline passengers show up for their reserved seat, an airline sells 125 tickets for a flight that holds only 124 passengers. The probability that a passenger does not show up is 0.10, and the passengers behave independently. Round your answers to two decimal places (e.g. 98.76). (a) What is the probability that every passenger who shows up gets a seat? (b) What is the probability that the flight departs with empty seats? (c) What are the mean...
Because not all airline passengers show up for their reserved seats, an airline sells 125 tickets...
Because not all airline passengers show up for their reserved seats, an airline sells 125 tickets for a flight that holds only 120 passengers. The proportion that a passenger does not show up is 10%, and the passengers behave independently. [Think Binomial Dist.] a. What is the proportion that every passenger who shows up gets a seat? b. What is the proportion that the flight departs with empty seats? c. What are the mean and standard deviation of the number...
Overbooking flights Eagle Air is a small commuter airline.  Each of their planes holds 15 people. Past...
Overbooking flights Eagle Air is a small commuter airline.  Each of their planes holds 15 people. Past records indicate that only 80% of people with reservations (tickets) do show up. Therefore, Eagle Air decides to overbook every flight. Suppose Eagle Air decides that it will accept up to 18 reservations per flight (18 is the maximum number of reservations per flight). Demand for Eagle Air flights is so strong that 18 reservations are booked for every flight. Everyone knows how popular...
An SRS of 100 flights of a large airline (call this airline 1) showed that 64...
An SRS of 100 flights of a large airline (call this airline 1) showed that 64 were on time. An SRS of 100 flights of another large airline (call this airline 2) showed that 80 were on time. Let p1 and p2 be the proportion of all flights that are on time for these two airlines. Reference: Ref 8-10 You wish to determine whether there is evidence of a difference in the on-time rate for the two airlines? To determine...
People are mixed up on the first day of orientation, when they should actually be seated...
People are mixed up on the first day of orientation, when they should actually be seated according to their roll number. But they can only move to an empty seat either to their left, right, front or back. If given a starting configuration, will we manage to get everyone seated roll number wise(iterated with rows given a higher priority over columns)? For simplicity, the empty seat is always the (n,n)th element of a nxn matrix. The final configuration should also...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT