In: Finance
Jenny takes out a loan of $40,000 from Westpac for her small business at 6.00% p.a. compounded monthly and promises to pay it back over two years with equal monthly payments. Six months after taking out the loan (just after the sixth payment is made), she decides to re nance her loan at a lower rate of 5.00% p.a. compounded monthly o ered by National Australia Bank for the remaining term of the loan. Assuming she can do so immediately and there are no re nancing costs or charges, what will her new monthly payments be?
The PV of annuity formula
PV = (C/r)/(1-(1/(1+r)^n))
where
PV = Present value of Loan Amount
C = EMI Amount
r = Rate of Interest
n = number of compounding periods
putting value - PV = $40000, r= 0.5% monthly, n= 24 months in the formula above
The EMI is equal to = $ 1772.82 rounded to 1773
Now the amortization schedule
S.No | Beginning Balanace | EMI | Interest Balance | Principal Balance | Ending Balance |
1 | 40000 | 1773 | 200 | 1573 | 38427 |
2 | 38427 | 1773 | 192 | 1581 | 36846 |
3 | 36846 | 1773 | 184 | 1589 | 35258 |
4 | 35258 | 1773 | 176 | 1597 | 33661 |
5 | 33661 | 1773 | 168 | 1605 | 32057 |
6 | 32057 | 1773 | 160 | 1613 | 30444 |
7 | 30444 | 1773 | 152 | 1621 | 28824 |
8 | 28824 | 1773 | 144 | 1629 | 27195 |
9 | 27195 | 1773 | 136 | 1637 | 25558 |
10 | 25558 | 1773 | 128 | 1645 | 23913 |
11 | 23913 | 1773 | 120 | 1653 | 22260 |
12 | 22260 | 1773 | 111 | 1662 | 20598 |
13 | 20598 | 1773 | 103 | 1670 | 18928 |
14 | 18928 | 1773 | 95 | 1678 | 17250 |
15 | 17250 | 1773 | 86 | 1687 | 15564 |
16 | 15564 | 1773 | 78 | 1695 | 13869 |
17 | 13869 | 1773 | 69 | 1703 | 12165 |
18 | 12165 | 1773 | 61 | 1712 | 10453 |
19 | 10453 | 1773 | 52 | 1721 | 8733 |
20 | 8733 | 1773 | 44 | 1729 | 7004 |
21 | 7004 | 1773 | 35 | 1738 | 5266 |
22 | 5266 | 1773 | 26 | 1746 | 3519 |
23 | 3519 | 1773 | 18 | 1755 | 1764 |
24 | 1764 | 1773 | 9 | 1764 | 0 |
After 6 months from amortization table above, the loan outstanding = $30444
now the Interest rate is 5% p.a. or 0.416% monthly and tie left is 18 months, so new EMI will be
30444 = (c/.00416)/(1-(1/(1.00416)^18))
c = 1758.96 or 1759
S.No | Beginning Balanace | EMI | Interest Balance | Principal Balance | Ending Balance |
7 | 30444 | 1759 | 127 | 1632 | 28812 |
8 | 28812 | 1759 | 120 | 1639 | 27173 |
9 | 27173 | 1759 | 113 | 1646 | 25527 |
10 | 25527 | 1759 | 106 | 1653 | 23874 |
11 | 23874 | 1759 | 99 | 1660 | 22214 |
12 | 22214 | 1759 | 92 | 1667 | 20548 |
13 | 20548 | 1759 | 85 | 1674 | 18874 |
14 | 18874 | 1759 | 79 | 1680 | 17194 |
15 | 17194 | 1759 | 72 | 1687 | 15506 |
16 | 15506 | 1759 | 65 | 1694 | 13812 |
17 | 13812 | 1759 | 57 | 1702 | 12110 |
18 | 12110 | 1759 | 50 | 1709 | 10402 |
19 | 10402 | 1759 | 43 | 1716 | 8686 |
20 | 8686 | 1759 | 36 | 1723 | 6963 |
21 | 6963 | 1759 | 29 | 1730 | 5233 |
22 | 5233 | 1759 | 22 | 1737 | 3496 |
23 | 3496 | 1759 | 15 | 1744 | 1751 |
24 | 1751 | 1759 | 7 | 1752 | 0 |