In: Finance
You purchase a 10 year bond with an annual fixed coupon rate of 7% and a par value of $1,000, when the yield to maturity on such bonds is 6%. You hold the bond for a year and then sell it. Assume the yield to maturity on the bond falls to 5.5% by the time you sell. What is your holding period return?
Value of Bond = PV of CFs from it.
Price of Bond Today:
Year | CF | PVF @6% | Disc CF |
1 | $ 70.00 | 0.9434 | $ 66.04 |
2 | $ 70.00 | 0.8900 | $ 62.30 |
3 | $ 70.00 | 0.8396 | $ 58.77 |
4 | $ 70.00 | 0.7921 | $ 55.45 |
5 | $ 70.00 | 0.7473 | $ 52.31 |
6 | $ 70.00 | 0.7050 | $ 49.35 |
7 | $ 70.00 | 0.6651 | $ 46.55 |
8 | $ 70.00 | 0.6274 | $ 43.92 |
9 | $ 70.00 | 0.5919 | $ 41.43 |
10 | $ 70.00 | 0.5584 | $ 39.09 |
10 | $ 1,000.00 | 0.5584 | $ 558.39 |
Price of Bond | $ 1,073.60 |
Price after 1 Year:
PV of CFc for remaining years
Year | CF | PVF @5.5% | Disc CF |
1 | $ 70.00 | 0.9479 | $ 66.35 |
2 | $ 70.00 | 0.8985 | $ 62.89 |
3 | $ 70.00 | 0.8516 | $ 59.61 |
4 | $ 70.00 | 0.8072 | $ 56.51 |
5 | $ 70.00 | 0.7651 | $ 53.56 |
6 | $ 70.00 | 0.7252 | $ 50.77 |
7 | $ 70.00 | 0.6874 | $ 48.12 |
8 | $ 70.00 | 0.6516 | $ 45.61 |
9 | $ 70.00 | 0.6176 | $ 43.23 |
9 | $ 1,000.00 | 0.6176 | $ 617.63 |
Price of Bond | $ 1,104.28 |
Holding Period return = [ Bond Price after 1 Year - Bond Price Today + Coupon amount ] / Bond Price Today
= [ $ 1104.28 - $ 1073.60 + 70 ] / 1073.60
= $ 100.68 / $ 1073.60
= 0.0938 i.e 9.38%